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Since antiquity, essential oils are considered as a source of bioactive molecules. Some of them have been shown to possess
antiviral activities against various virus strains, among them SARS-CoV-2.

The aim of this study is the search for compounds, among minor components extracted from different aromatic and medicinal
plants collected from Algerian pharmacopeia, which may posses possible COVID-19 antiviral activities, by molecular docking
in the active site of SARS-CoV-2 main protease.

Materials and methods. Thus, in this study 66 compounds which are declared at traces amount by authors in the
composition of the essential oils, and selected from 9 Algerian medicinal plants were docked in the active site
of SARS-CoV-2 main protease as possible inhibitors of SARS-CoV-2.

Results. The obtained result shows that only Cembrene constitutes the structure with the best affinity in the binding site of
the enzyme with a Bioavailability Score “ABS” equal to 0.55 which confirm non Lipinski violations. However, the compound
is predicted not orally bioavailable, because too lipophilic (lipophilicity: Log P~ (XLOGP3)=6.04>+5.0) and less polar
(polarity: TPSA=0.00A2<20 A2), and it is also predicted as not absorbed, not brain penetrant and not subject to active efflux
from the CNS or to the gastrointestinal lumen.

Conclusion. This result deserves to be more detailed and either confirmed or invalidated with a view to better and rational
exploitation.

Keywords: cembrene; pharmacokinetic; COVID-19; bioavailability score; Algerian medicine; molecular docking
Abbreviations: ABS — Abbot Bioavailability Score; ACE-2 — Angiotensin-Converting Enzyme 2; ADME — Absorption,
Distribution, Metabolism, Excretion; ADMET — Absorption, Distribution, Metabolism, Excretion, Toxicity, Ala — Alanine;
AMES — Assay of the ability of a chemical compound to induce mutations in DNA, Asn — Asparagine; BBB — Blood—Brain
Barrier; Caco-2 — Colon Cancer Cell Line; CLogP — Octanol/Water Partition Coefficient; CLpro-3 — Enzyme 3-Chymotrypsin-
Like protease; CNS — Central Nervous System; COVID-19 — Coronavirus Disease-19; CYP — Cytochrome; CYS — Cysteine;
EOs — essential oils; GIn — Glutamine; Glu — Glutamic acid; Gly — Glycine; HB — Hemoglobin; hERG — human Ether-a-go-
go-Related Gene; HIA — Human Intestinal Absorption; HIS — Histidine; HSV-1 — Herpes Simplex Virus type 1; Leu — Leucine;
MDCK — Madin-Darby Canine Kidney; Met — Methionine; MlogP — Moriguchi logP; MW — Molecular Weight; MWT —
Molecular Weight; OCT — Octanol; pdb code 6LU7 — Protein Data Bank (crystal structure of COVID-19 main protease);
Phe — Phénylalanine; PkCSM — Predicting small-molecule pharmacokinetic and toxicity properties; PLpro — Papain Like
protease; PGP — Permeability-GlycoProtein; Pi-sigma — sigma (o) and pi (i) bonds; Pro — Protein; PSA — Polar Surface
Area; RdRp — RNA-dependent RNA polymerase; QSAR — Quantitative Structure Activity Relationships , RNA — Ribonucleic
Acid; SARS-CoV-2 — Severe Acute Respiratory Syndrome Coronavirus 2; Thr — Threonine; TPSA — Total Polar Surface Area;
VDss — volume of distribution; WLOGP — Wildman-Crippen LogP (Water Partition Coefficient (logP)); XLOGP3 — Octanol-
Water Partition Coefficient (logP).
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C gpeBHUX BpeMeH 3GUpHble Macaa CYUTANINCb UCTOYHUKOM BUONOTMYECKN aKTUBHbIX COeMHEHW. Bbblano goKkasaHo, Y4To
HEKoTopble U3 HUX 061a43a0T NPOTUBOBMPYCHOM aKTUBHOCTbIO B OTHOLUEHWWM Pa3/IMYHbIX LUITAMMOB BMPYCOB, B TOM Yucie
SARS-CoV-2.

Lienbto faHHOTO MCCIeA0BAHNA CTasl MOUCK COEANHEHWUI Cpesy BTOPOCTEMNEHHbIX KOMMOHEHTOB, BblAENEHHbIX U3 Pa3INYHbIX
APOMATUYECKUX M IeKAPCTBEHHbIX PACTEHUI, KOTOPbIE MOTYT 06134aTb BO3MOXHOW MPOTUBOBMPYCHOM aKTUBHOCTbLIO NPOTUB
COVID-19 nyTem MONEKYNAPHOrO AOKMHIA B aKTUBHOM LLEHTPE OCHOBHOM npoTeasbl SARS-CoV-2.

Matepuanbl U metogbl. ABTOpaMu UcCefoBaHbl 66 COeAMHEHUI, COAEPMKALLMXCA B CNeA0BbIX KOMYECTBaxX B COCTaBe
adupHbIX Macen. CoegMHeHUA MoayYeHbl U3 9 NIeKapCTBEHHbIX PACTeHW, MPOM3PACTAOWMX Ha Tepputopun AKMpa.
WUccnepyemble coefvHeHUA Bblnn BKAOYEHbI B aKTUBHbIW LLEHTP OCHOBHOM npoTtea3bl SARS-CoV-2 B KayecTBe BO3MOMKHbIX
MHrnbuTopos SARS-CoV-2.

Pe3ynbratbl. Mony4YeHHble pe3ynbTaTbl MOKA3bIBAKOT, YTO TONbKO YemMbpeH npeactaBaseT coboi CTPYKTypy C Hauayywen
adpdMHHOCTBIO B caliTe cBA3bIBAHMA GepMeHTa C NoKasaTesieM 6MOAOCTYNHOCTH, paBHbIM 0,55, YTo noATBEPKAAET OTCYTCTBUE
HapyweHuin npasuna JIMnuHckn. OAHaKO MNPOrHO3MpyeTcs, YTO coeAuHeHWe He byaeT obnagatb 6MOAOCTYNHOCTLIO
npy nepopasbHOM NpUéme, B CBA3N C M36b|TO‘4I—!Oif’I nmpod)manOCTbro (nunodunbHocte: Log P, (XLOGP3)=6,04>+5,0)
N HU3KOM nonspHocTbio (nonapHocTb: TPSA=0.00A%<20 A?). Takxe cneayer OTMETUTb, Y4TO YeMbBpeH He BCacblBaeTcs, He
NPOHUKAET B MO3T 1 He NoABepraeTca akTuBHoMy oTToky U3 LUHC nnu B npocset KKT.

3aKknoueHue. [lpeactaBneHHble pe3ynbTaTbl 3acayXupatoT 6onee NogpobHOTO OMNUCaHWA, MNOATBEPNKAEeHWUA, Mbo
QHHYMPOBaAHWA C Lenbto 6onee 3PpPeKTUBHOIO M PaLMOHANbHOTO MCMNOb30BaHUA.

KnioueBble cnoBa: yembpeH; dapmakokmHeTuKa; COVID-19; 6M0OA0CTYNHOCTb; a/KMPCKAa MeAMUUHA; MOJIEKYNAPHbIN
DOKUHT

Cnucok cokpaweHuin: JIC — nekapcTBeHHoe cpeactso; JIP[T — fneKapCTBEHHbIM pacTUTeNbHbIM npenapaT; BAC —
6uonornyeckn akTuBHble coeauHeHuna; ACE-2 — aHrmoteHsuHnpespawawowmii depmeHt 2; ADME — BcacbiBaHue,
pacnpeaeneHune, metabonmam, akckpeums; ADMET — BcacbiBaHWe, pacnpesesneHne, MeTaboim3m, SKCKpeLuns, TOKCUYHOCTb;
Ala — anaHuH; AMES — aHann3 cnocobHOCTM XMMUYECKOTO COeANHEHMA MHAYLMPOBaTb MyTaunn B [IHK, Asn — acnaparuH;
6 — remaTosHuedpannyeckmnin bapbep; Caco-2 — AMHUA KNETOK paKa TONCTOM KULWKK; ClogP — KoadduumneHT pasgeneHusa
OKTaHona u Boapl; CLpro-3 — dpepmeHT 3-xumoTpuncMHonogobHas npoteasa; LUHC — wueHTpanbHaa HepBHasA cUCTEMA;
CYP — yutoxpom; CYS — uuctenH; IM — adupHble macna; Gln — motamuH; Glu — myTamnHoBas Kucaota; Gly — rnumh;
Hb — remornobuH; hERG — reH cneumduyeckmx Kanmesbix KaHanos cepaua; HIS — ructmgun; HSV-1 — Bupyc npocTtoro
repneca 1-ro Tuna; Leu — neriynH; MDCK — kneTkn MagmH-[ap6bu nouku cobaku; Met — metmoHuH; MM — monekynapHas
macca; OCT — okTaHon; pdb-kog 6LU7 — KpucTanamnyeckan CTpyKTypa OCHoBHOM npoTteasbl COVID-19; Phe — dpeHnnanaHuy;
PkCSM — nporHo3upoBaHue ¢apMaKOKMHETUYECKMX W TOKCUYECKUX CBOMCTB HU3KOMOJIEKYNAPHbLIX COEAUMHEHWUI;
PLpro — nanavHonogobHas npoteasa; PGP — raukonpotenH P; MMMM — njowaab MONEKYNAPHON MNONspHOWM
nosepxHoctn monekyn; RdRp — PHK-3aBucumaa PHK-nonnmepasa; QSAR — COOTHOLIEHWE KONMYECTBEHHOM CTPYKTYpbI
M aktmBHocTU; PHK — puboHyknenHoBas Kucnota; Thr — TpeoHuH; TPSA — obuian naowaab NONSPHON NOBEPXHOCTHU;
VDss —ob6bem pacnpegenenuns; WLOGP — koadduumeHT pasgenerms soabl (logP); XLOGP3 — KoaboduumeHT pasgeneHus
OKTaHona v Boapl (logP).

INTRODUCTION
The SARS-CoV-2 virus, causative agent of the
now, COVID-19, is

raised great public

around the world [4].

pandemic has
socioeconomic concern all

most dangerous pandemic till As on February 2021, there have been over 100

health and

the seventh coronavirus [1] appeared in less than
twenty years. The structure of this virus is greatly
established [2], and well described [3]. This emerged

Tom 13, Beinyck 1, 2025

million cases and more than 2 million deaths reported
since the start of the pandemic [5]; which mean that
the pandemic spread very quickly and the numerous
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routes of virus transmission have been described
in the literature [3]. Knowing the mechanisms of
virus infection, penetration into the host cell [1, 6],
endocytosis then membrane fusion [7], and its
replication cycle [8]; several antiviral strategies have
been studied and proposed, among other inhibition
of entry of SARS-CoV-2 into the host cell [9], Inhibition
of the protease of SARS-CoV-2 [10], Inhibition of the
synthesis (replication) of viral RNA [1]. These have
constituted potential targets, in probable therapeutic
treatments of Covid-19, for drug molecules. Based on
previous experiences, drugs have been suggested as
promising therapies for the treatment; among which
and the most studied, we cite, by way of example:
Hydroxychloroquine and chloroquine are used
to inhibit SARS-CoV-2 binding to the ACE-2 receptor
and impedes membrane fusion [4], or to block the
replication of enveloped viruses by inhibiting the
glycosylation of envelope proteins) [11]; Remdesevir
is designed to inhibit viral RdRp, an enzyme that is
integral to viral RNA replication. Without viral RNA
replication, the virus is unable to multiply and spread
to the infected host’s other cells and reduces viral
load [4]. As protease inhibitors, Lopinavir in combination
with ritonavir may inhibit the action of 3CLpro [12],
enzyme 3-chymotrypsin-like protease which plays a
crucial role in processing the viral RNA, by disrupting
the process of viral replication and release from host
cells [13]; and others, in the process of testing and
experimentation. However, none of these drugs are
immune to side effects (unwanted), to contraindications,
to precautions, and to drug interactions; in addition,
not all researchers agree on the same opinion on the
use of these drugs in the treatment of the pandemic,
the pros and cons.

For these reasons and for others, the return
to nature is required. Thereby, according to some
authors [14] herbal medicines and medicinal plant-based
natural compounds offer considerable potential for the
development of new agents effective against infections
currently difficult to treat and provide a rich resource for
novel antiviral drug development. For example, some
natural medicines have been shown to possess antiviral
activities against various virus strains [14]. So, plants
have been utilized for the isolation of novel bioactive
compounds as they synthesize a vast number of
chemical compounds with complex structures. Natural
products, either as pure compounds or as standardized
plant extracts, provide unlimited opportunities for
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new antiviral drugs, since their chemical diversity
provides unmatched availability [15]. Indeed, over 70%
of therapies have a natural origin or were motivated
by natural product chemistry [16]. Therefore, Ledn-
Méndez et al [17] consider essential oils “EOs” (complex
mixtures of odorous and volatile compounds naturally
produced by plants as secondary metabolites and stored
with
molecular weights and diverse chemical structures, and

in special fragile secretory structures, low
which bears tens to hundreds of varieties of molecules) as
a source of bioactive molecules.

Biological properties of EOs are highlighted [17].
The effectiveness of EO has been attributed mainly
to the presence of bioactive compounds in their
[18].
attributed, in some cases, both to major components

composition These biological activities are
and to the minor ones present in these oils, but
generally the essential oil, in its totality, acted less than
the major constituents [19]. According to Pengelly [20],
it is often the unique chemical combination rather
than a single component that is responsible for any
therapeutic activity. Antiviral activity is one of the other
biological activities, which was document. Thus, Ma and
Yao [21] summarizes the antiviral properties of EOs from
different aromatic plants and EO-derived components
on different virus and Tariq et al. [22] enumerates
the major constituents of Medicinal and aromatic
plants along with their antiviral activities. There, many
studies reporting antiviral activity of natural products
or isolates against human coronavirus strains are
summarized by others [23].

The results of several studies concerning the
antiviral efficacy of essential oils from a wide range of
plant species led Ma and Yao [21] to draw the following
conclusions, for each study: for a study, antiviral efficacy
of the EO could be ascribed to its principle; for another,
component minor components may be more bioactive
than the primary component; among others, either
minor or primary are responsible for EO bioactivity;
others studies suggest that individual terpene in EO
may not contribute equally to the antiviral efficacy
of the EO mixture; and concluded that the antiviral
effectiveness of EOs can be contributed unequally to
the active components, either minor or principle ones,
and underlying synergism. It is necessary to point out
that to search for potential and specific inhibitors of
Coronavirus, the virtual screening is mostly carried out
to identify novel phytochemicals against SARS-CoV-2
from different plants. In addition, Wani et al. [24] noted
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that the data available on anti-COVID-19 activity of
essential oils is mostly based on in vitro studies and
computer aided docking techniques. In this way, four
proteins (spike proteins, RdRp “RNA-dependent RNA
polymerase”, 3CLpro “chymotrypsin-like protease”, and
PLpro “papain like protease”) which are essential for
the pathogenicity of virus [14] constitute the molecular
targets of natural products against coronavirus [23].
As an example, spike protein was selected for virtual
screening [25], main protease [26], PlLpro [27],
RdRp [28], and 3CLpro [27] all most In Silico screening.
Moreover, it has been shown that enveloped viruses
respond sensitively to essential oils [15].

Thus, in continuation with our previous works [29],
about minor components, extracted from different
aromatic and medicinal plants collected from Algerian
pharmacopeia, which were docked in the active site
of SARS-CoV-2 main protease as possible inhibitors of
SARS-CoV-2, so we consequently docked another minor’s
one, declared as in trace amount by authors, to main
protease to look for possible CoVid-19 antiviral agents.

THE AIM of this study is the search for compounds,
among minor components extracted from different
aromatic and medicinal plants collected from Algerian
pharmacopeia, which may posses possible COVID-19
antiviral activities, by molecular docking in the active
site of SARS-CoV-2 main protease.

MATERIALS AND METHODS

Data collection

66 compounds were selected from nine medicinal
plants growing wild in Algeria namely, Artemisia
arborescens L. (1 compound), Pinus halepensis Mill.
(4 compounds), Eucalyptus spp. (1),
oxycedrus L. (16), Myrtus communis (4), Ocimum

Juniperus

basilicum (1), Ocimum gratissimum (2), Thymus
munbyanus (28), Teucrium polium (10). On the one
hand, all these plants are known, in the traditional
Algerian pharmacopoeia, to treat pulmonary diseases
and in general diseases of the respiratory system.
On the other hand, compounds selected were those
which are declared at traces amount by authors in the
composition of the essential oils of these plants.

Molecular Docking

We performed a docking of studied compounds
in the binding pocket of SARS-CoV-2 main protease
(pdb code 6LU7) [30], to determine binding affinity
and study the intermolecular interactions of studied
molecules in the specific target. Molecular docking

Tom 13, Beinyck 1, 2025

was implemented by means of the AutoDock program.
Autodock vina was used for docking of ligand [31]
and Autodock tools 1.5.6 to analysis the resuls [32].
Discovery Studio 2016 program was used to obtain
the binding site of crystallographic structure of SARS-
CoV-2 main protease (pdb code 6LU7) [33]. The
active site of SARS-CoV-2 main protease (pdb code
6LU7) with coordinates (x=-10.782, y=15.787 and
z=71.277) has been determined on the basis of the
co-crystallized ligand N3 [34]. The grid box parameters
were 20x34x20 xyz points with a grid spacing of 1 A,
the grid box was made keeping active site in the center
of the box and cover the folic acid binding site in the
enzyme (generated using the co-crystallized ligand (N3)
as the center for docking) [34]. To prepare ligand and
enzyme, an extended PDB format, termed PDBQT, was
used for coordinate files, which includes atomic partial
charges and atom types using Autodock tools 1.5.6.
Torsion angles were calculated to assign the flexible
and non-bonded rotation of molecules. The docked
results were visualized and analyzed using the Discovery
Studio program [35]; And calculation were performed
according Hernandez-Santoyo et al. [36].

Lipinski’s Rule of five and ADMET Prediction

According Lipinski et al [37], the rule of five predicts
that poor absorption or permeation is more likely
when there are more than 5 H-bond donors, 10 H-bond
acceptors, the molecular weight (MWT) is greater
than 500 and the calculated Log P (CLogP) is greater
than 5 (or MlogP >4.15). That rule drug likeness for orally
available drugs was calculated by using pkCSM [38] web
servers. Molecules violating more than one of these
parameters may have problems with bioavailability and
a high probability of failure to display drug-likeness [39].

ADMET concept that focuses on
absorption, distribution, metabolism, excretion (ADME)
and toxicity characteristics in safe medicines. So, in
silico approaches were used to predict and model the
most relevant pharmacokinetic, metabolic and toxicity
endpoints, thereby accelerating the drug discovery
process [40, 41]. The computational prediction of the
pharmacokinetic parameters/properties of isolated
compounds was done using pkCSM [38] web servers.

is another

RESULTS AND DISCUSSION

Molecular Docking

Molecular docking was performed to find the poses
and possible types of interactions between the 66
studied natural compounds molecules and SARS-CoV-2
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Mpro (pdb code 6LU7). The results are presented in
Table 1.

The study shows that Cembrene is the best
compound with binds with the pocket of SARS-CoV-2
Mpro; which could have more inhibitory potential
against SARS-CoV-2 main protease than the other
studied compounds. It is one of elements declared
at amount trace in the essential oil of Juniperus
oxycedrus L. Previous study showed another minor
compound (Abietatriene), for the same species, which
have potential inhibition against SARS-CoV-2 main
protease with an estimated free binding energy of
-6.4 kcal/mol [29]. The essential oils of this species
revealed antiviral activity against SARS-CoV and HSV-1
replication in vitro; the effectiveness was assessed by
visually scoring of the virus induced cytopathogenic
effect post-infection [42]. Also, it is reported in the
literature that this species is used in folk medicine in the
treatment of many infectious diseases [43].

“Cembranes” family are the most widely occurring
diterpenes in Nature and from which hundreds have
been isolated, mainly from three sources tobacco,
Caribbean gorgonians, and Pacific soft corals [44].
Cembrene, the first naturally occurring 14 memhered
oHyy Fig. 1) to
be characterized, is found in pine oleoresins [45].

cyclic diterpene hydrocarbons (C

According Han et al. [46], the structure of a compound
determines its physical and chemical properties as well
as the ADMET. A range of biological activities has been
reported for cembranes, against tumors, inflammation,
as well as microbial and/or viral infections [47-49].
Cembrene seems be to inhibit viral receptor with a
docking score of -6.3 kcal/mol through the Alkyl bond
with CYS-145 and Pi-sigma HIS-41 (Fig. 2). Such types
of bond help to improve the hydrophobic interaction
of the ligand in the binding pocket of the receptor [50].
According the same authors, a large number of Pi-sigma
interactions, which largely involves charge transfer,
helps in intercalating the drug in the binding site of the
receptor and, on the other hand, the complex stability
can be linked to the with extra Pi-sigma interaction.
Elsewhere, many other types of hydrophobic/
hydrophilic interactions were also perceived comprising
Van der Waals, Conventional Hydrogen Bonds, Amide-
Pi Staked, Carbon Hydrogen Bond, and Alkyl/Pi-Alkyl
types. These interactions were shaped between The
N3 co-crystallized ligand with Asn142, Glu 166, His 164,
Gly 143, Thr 190, GIn 189, His 163, Phe 140, Leu 141,
Met 165, His 172, Leu 167, Ala 191, Met 167, Pro 168,
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Met 49, His 41 amino acids residues in the active site of
studied enzyme, SARS-CoV-2 Mpro (-6.9 kcal/mol) [51].

Lipinski’s Rule of five and ADMET Prediction

The molecular weight and other parameters
for cembrene are shown in table 2. Cembrene was
found to be fitting well with the Lipinski rule of 5 for
drug likeliness, with one violation concerning Log P,
whereas the co-crystallized ligand presented three
Lipinski Violations. The n-octanol-water partition
coefficients, usually expressed as logP values, are used
as a measure of lipophilicity and the importance of the
use of these values in quantitative structure activity
relationships (QSAR) is well established for prediction of
biological or pharmacological activity of compounds [52].
The logP is closely related to the transport properties
of drugs and their interaction with receptors [53].

These physicochemical parameters are associated
with acceptable aqueous solubility and intestinal
permeability and comprise the first steps in oral
bioavailability [54]. For example, the higher molecular
weight compounds are in general less likely to be orally
active than lower one; also, rotatable bond count is now
a widely used filter following the finding that greater
than 10 rotatable bonds correlate with decreased oral
bioavailability. In a general way, Oral drugs are lower
in MWT and have fewer H-bond donors, acceptors and
rotatable bonds [54], which coincides with our result.

The computational prediction of the pharmacokinetic
parameters/properties of Cembrene are displayed in
Table 3. Pharmacokinetic parameters are derived from the
measurement of drug concentrations in blood or
plasma [40]. Han et al. [46] attribute each parameter
to some factors which depend like that: the absorption
of drugs depends on factors including membrane
permeability [indicated by colon cancer cell line
(Caco-2)], intestinal absorption, skin permeability
levels, P-glycoprotein substrate or inhibitor. The
distribution of drugs depends on factors that include
the blood—brain barrier (logBB), CNS permeability,
and the volume of distribution (VDss). Metabolism is
predicted based on the CYP models for substrate or
inhibition (CYP2D6, CYP3A4, CYP1A2, CYP2C19, CYP2C9,
CYP2D6, and CYP3A4). Excretion is predicted based on
the total clearance model and renal OCT2 substrate. The
toxicity of drugs is predicted based on AMES toxicity,
hERG inhibition, hepatotoxicity, and skin sensitization.
For more detail, Waterbeemd and Gifford [40] well
described and reviewed the key pharmacokinetic
parameters and their importance for the dose regimen
and dose size.
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Table 1 — Affinity of the best conformation in the binding pocket of SARS-CoV-2 Mpro

Compounds Score (kcal/mol) Compounds Score (kcal/mol)
Methyl eugenol -4.9 Phellandrene -4.5
Tricyclene -4.0 trans-PinoCarveol -4.5
Terpinen-4-ol -4.7 Neryl acetate -5.2
a-Terpinyl acetate -5.2 a-Bisabolol -5.7
Manoyl oxide -5.8 Isoamyl 2-methyl butyrate -4.4
S-Terpineol -5.2 n-Nonanal -3.8
d-3-Carene -4.4 Z-Thujone -4.5
n-Octanol -3.6 E-Verbenol -4.8
n-Nonanal -3.8 Thuj-3-en-10-al -4.9
Terpin-1-ol -4.8 Geraniol -4.8
Fenchyl acetate -4.9 Geranial -4.6
cis-Carveol -4.6 a-E-Bergamotene -5.0
trans-Piperitol acetate -5.0 14-hydroxy-a- Muurolene -5.5
trans-B-Damascenone -4.9 B-Bisabolenol -5.9
B-Calacorene -5.8 Dibutyl phthalate -5.6
7-epi-a-Eudesmol -5.7 a-Terpinolene -4.9
Juniper camphor -5.4 4-Terpineol -4.7
(E,Z)-Farnesol -5.3 cis-Linalool oxide -4.7
B-Bisabolenal -5.8 n-Octanol -3.6
(Z,E)-Farnesyl acetate -5.6 6,7-Epoxymyrcene -4.3
(E,E)-Farnesyl acetate -5.8 n-Nonanal -3.8
Cembrene -6.3 trans-Thujone -4.9
(3Z)-Hexenol -3.8 trans-p-Mentha-2,8-dien-1-ol -4.8
n-Hexanol -3.6 cis-p-Mentha-2-en-1-ol -4.8
3-Octanone -3.9 cis-Limonene oxide -4.9
3-Octanol -3.9 trans-limonene oxide -4.6
Isoborneol -4.6 6-Elemene -4.9
Trans-pinocamphone -4.8 n-hexadecanoic acid -4.4
Neral -4.6 a-trans-Bergamotene -5.2
p-Vinylguaiacol -4.8 cis-Muurola-4(14),5-diene -5.1
Sesquicineole -5.7 n-Heptacosane -4.1
o-Calacorene -5.6 n-Nonacosane -4.3
Cyclocolorenone -5.5 n-Dotriacontane -4.1

Table 2 - Lipinski’s rule of potential inhibitor: Cembrene

Log P HB Acceptor HB Donor Rotatable bonds MW, g/mol Lipinski violations
Rule <5 <10 <5 <10 <500 <1
Cembrene 6.62 0 0 1 272.47 1

Note: HB — hemoglobine; MW — molecular weight.

Figure 1 — Structures of Cembrene! with the best Affinity in the binding pocket of SARS-CoV-2 Mpro.

* Cembrene. PubChem. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Cembrene
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Table 3 — In silico ADMET prediction of potential inhibitor: Cembrene

Property Model Name Unit Numeric/Categorical (Yes/No) Predicted Value
Water solubility log mol/L -7.207
Caco2 permeability log Papp in 10 cm/s 1.458
Intestinal absorption (human) % Absorbed 94.374

Absorption Skin Permeability log Kp -1.675
P-glycoprotein substrate Yes/No No
P-glycoprotein | inhibitor Yes/No No
P-glycoprotein Il inhibitor Yes/No No
VDss (human) log L/kg 0.667

o Fraction unbound (human) Fu 0.107

Distribution
BBB permeability log BB 0.689
CNS permeability log PS -2.206
CYP2D6 substrate No
CYP3A4 substrate No
CYP1A2 inhibitior No

Metabolism CYP2C19 inhibitior Yes/No Yes
CYP2C9 inhibitior No
CYP2D6 inhibitior No
CYP3A4 inhibitior No

. Total Clearance log ml/min/kg 1.48

Excretion
Renal OCT2 substrate Yes/No No
AMES toxicity Yes/No No
Max. tolerated dose (human) log mg/kg/day 0.269
hERG | inhibitor Yes/No No
hERG Il inhibitor Yes/No No

Toxicity Oral Rat Acute Toxicity (LD50) mol/kg 1.512
Oral Rat Chronic Toxicity (LOAEL) log mg/kg_bw/day 1.244
Hepatotoxicity Yes/No No
Skin Sensitisation Yes/No Yes
T.Pyriformis toxicity log pg/L 2.031
Minnow toxicity log mM -0.448

Note: BBB — blood-brain barrier penetration

Hisad
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Figure 2 — 2D and 3D presentations of interactions between Cembrene and SARS-CoV-2 Mpro.
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Figure 4 — Bioavailability Radar of Cembrene

MWT has a large effect on solubility, our result
for solubility (237.281, Moderately soluble) is in
agreement with Gleeson [55] for which on average,
molecules with MWTs < 300 have solubilities of
=250 uM (umol/L), and which is considered as an
important component of an orally administered drug,
determining the amount freely available to permeate
through the gastrointestinal membranes into systemic
circulation; also, the increasing of MWT is correlate with
decreasing of membrane permeability, according their
parameters MDCK or Caco-2.

A Bioavailability Score, ABS identifies poorly-
and well-absorbed compounds tested in humans,
itis 0.55 for compounds, which pass the rule of five [56].
Our result shows an ABS of Cembrene equal to 0.55
which confirm non Lipinski violations. Considering the
bioavailability radar of Cembrene (Fig. 4), the compound
is predicted not orally bioavailable, because too lipo
(lipophilicity: Log P~ (XLOGP3)=6.04>+5.0) and less
polar (polarity: TPSA=0.00A2<20 A2). The molecular polar
surface area (PSA) is considered as descriptor that was
shown to correlate well with passive molecular transport
through membranes and, therefore, allows prediction
of transport properties of drugs [57], and lipophilicity
as the key physicochemical parameter linking membrane
permeability — and hence drug absorption and
distribution- with the route of clearance (metabolic
or renal) [40]. For instance, it has been reported that
target promiscuity as well as toxicity issues like hERG
inhibition, phospholipidosis or cytochrome P450 (CYP)
inhibitions are more likely to be problematic for
compounds with high lipophilicity values; also solubility
and metabolism are more likely to be compromised
at these high values whereas permeability could be
decreased when this property is too low [58].

Tom 13, Beinyck 1, 2025
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Figure 5 — Boiled-Egg of Cembrene

According Daina and Zoete [59], Gastrointestinal
absorption (HIA) and brain penetration (BBB) are
two pharmacokinetic behaviors crucial to estimate at
various stages of the drug discovery processes. So, to
this end, the Brain or Intestinal estimated permeation
method (BOILED-Egg) is proposed by Daina and Zoete in
2016 [59] as an accurate predictive model that allows
for intuitive evaluation of passive gastrointestinal
absorption (HIA) and brain penetration (BBB) in function
of the position of the molecules in the WLOGP-versus-
TPSA referential and which works by computing the
lipophilicity and polarity of small molecules. The
colored zone is the suitable physicochemical space
for orally bioavailability, the white region in the
BOILED-Egg graphical is the physicochemical space of
molecules with highest probability of being absorbed
by the gastrointestinal tract, the yellow region (yolk) is
the physicochemical space of molecules with highest
probability to permeate to the brain and blue dots
for P-gp substrates (PGP+) and red dots for P-gp non-
substrate (PGP-) as described by the same authors. For
this, Cembrene is predicted as not absorbed and not
brain penetrant (outside the Egg, Fig. 5) and not subject
to active efflux from the CNS or to the gastrointestinal
lumen (P-gp non-substrate (PGP-), red dot).

CONCLUSION

A virtual screening technique, including molecular
docking, and ADMET Prediction was carried out, for
the selection of the compounds which could have
a potent antiviral treatment of COVID-19. In total,
66 natural
herbal medicine, were docked in the active site of

compounds, selected from 9 Algerian

SARS-Cov-2 main protease. The results of this study
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indicates clearly that, among these compounds, only
Cembrene constitutes the structure with the best
affinity in the binding site of the enzyme and respect
the conditions mentioned in Lipinski’s rule, except the
Log P, a measure of lipophilicity and closely related to
the transport properties of drugs and their interaction
with receptors. Concerning the pharmacokinetic

properties and bioavailability, Cembrene is predicted
not orally bioavailable, because too lipophilic and less
polar and. It is also predicted as not absorbed and not
brain penetrant and not subject to active efflux from
the CNS or to the gastrointestinal lumen. This result
might be interest researchers confirm or invalidate the
results obtained and push the research thoroughly.
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