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Kappa opioid receptors play a pivotal role in regulating both physiological and cognitive processes. RU-1205, a benzimidazole 
derivative acting as a specific kappa opioid receptor agonist, has demonstrated the capacity to modulate neuronal activity. 
However, the nuanced effects of RU-1205 on neuronal activity remain incompletely understood.
The aim of the study was to identify and elucidate the effects of the kappa opioid agonist RU-1205 on local field potentials 
and behavior in the discriminative stimulus paradigm.
Materials and methods. The experiments were conducted in male rats weighing 260–280 g. The animals were surgically 
implanted with cortical electrodes (F — frontal, O — occipital, P — parietal) as well as deep electrodes in specific brain 
regions, including the medial prefrontal cortex (mPFC), hippocampus (Hipp), nucleus accumbens (NAc), ventral tegmental 
area (VTA) and amygdala (Amy). LFP signals were obtained and analyzed after the administration of the compound  
RU-1205 (350 μg/5 μl intracerebroventricular injections) using spectral and coherence analysis methods. Drug  
discrimination paradigm was employed to evaluate the similarity of the compound RU-1205 to the selective kappa opioid 
receptor agonist U-50488 and the p38 MAPK inhibitor SB203580 (including in combination with the opioid receptor blocker 
naloxone).
Results. Electrophysiological changes observed include an increase in power of theta frequencies (4–8 Hz) in F, P and 
mPFC leads, along with a reduced power of delta frequencies (0.5–4 Hz) in O and Hipp)leads, and a suppression of gamma 
activity (30–50 Hz) in F and mPFC leads, all with statistical significance (p <0.05). Post-administration of RU-1205 resulted 
in a decreased coherence between pairs of electrodes: P–O, P–F, F–O, and mPFC–Hipp (all p <0.05). It was found that the 
compound RU-1205 is similar to U-50488 and does not exhibit p38 inhibitory activity in the discriminative stimulus paradigm.
Conclusion. Compared to the selective kappa-opioid agonist U-50488, the compound RU-1205 induces less significant 
changes in LFP activity without electrophysiological and behavioral signs of beta-arrestin pathway activation. The overall 
data suggest that RU-1205 is a functionally selective agonist of kappa-opioid receptors.
Keywords: kappa opioid receptors; RU-1205; electrophysiology; brain bioelectrical activity; spectral analysis; coherence 
analysis; discriminative stimulus paradigm; drug discrimination 
Abbreviations: CNS — central nervous system; ACSF — artificial cerebrospinal fluid; BLA — basolateral amygdala; dHPC —  
dorsal hippocampus; Hipp — hippocampus; LFP — local field potential; NAc — nucleus accumbens; p38 MAPK —  
p38 mitogen-activated protein kinase; PrL — prelimbic cortex; VTA — ventral tegmental area.
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Каппа-опиоидные рецепторы играют ключевую роль в регуляции физиологических и психических процессов. 
Было показано, что производное бензимидазола РУ-1205, специфический агонист каппа-опиоидных рецепторов, 
модулирует активность нейронов. Однако комплексное воздействие соединения РУ-1205 на нейрональную 
активность остается недостаточно изученным.
Цель. Поиск и интерпретация изменений локального полевого потенциала, а также оценка поведения в модели 
дискриминации стимула под влиянием каппа-опиоидного агониста РУ-1205.
Материалы и методы. Крысам (260–280 г) имплантировали корковые (F — фронтальные, O — окципитальные, 
P — париетальные), а также глубокие электроды в зону медиальной префронтальной коры (mPFC), гиппокампа 
(Hipp), прилежащего ядра (NAc), вентральной области покрышки (VTA) и миндалины (Amy). Проводился 
спектральный и когерентный анализ LFP-сигналов, полученных после введения соединения РУ-1205 (350 мкг/5 мкл 
интрацеребровентрикулярно). Использовалась модель дискриминации стимула, чтобы оценить сходство соединения 
РУ-1205 с селективным агонистом каппа-опиоидных рецепторов U-50488 и ингибитором MAPK p38 SB203580 (в том 
числе в комбинации с блокатором опиоидных рецепторов налоксоном).
Результаты. Зафиксированы изменения: повышение мощности в диапазоне тета-частот (4–8 Гц) на отведениях F, P и 
mPFC, снижение мощности в диапазоне дельта-частот (0,5–4 Гц) сигналов с O и Hipp отведений, а также подавление 
гамма-активности (30–50 Гц) на отведениях F и mPFC (p <0,05). После введения РУ-1205 наблюдалось снижение 
когерентности между парами электродов: P–O, P–F, F–O и mPFC–Hipp (p <0,05). Отсутствие p38-ингибирующей 
активности РУ-1205 и его сходство с U-50488 подтверждено в модели дискриминации стимула.
Заключение. Установлено, что по сравнению с селективным каппа-опиоидным агонистом U-50488 соединение 
РУ-1205 вызывает менее выраженные изменения LFP-активности без электрофизиологических и поведенческих 
признаков активации бета-аррестинового пути. Совокупность данных свидетельствует о принадлежности соединения 
РУ-1205 к функционально селективным агонистам каппа-опиоидных рецепторов.
Ключевые слова: каппа-опиоидные рецепторы; РУ-1205; электрофизиология; биоэлектрическая активность мозга; 
спектральный анализ; когерентный анализ; модель дискриминации стимула; дискриминация лекарственных средств
Список сокращений: ЦНС — центральная нервная система; ACSF — искусственная спинномозговая жидкость;  
BLA — базолатеральная миндалина; dHPC — дорсальный гиппокамп; Hipp — гиппокамп; LFP — локальный полевой 
потенциал; NAc — прилежащее ядро; p38 MAPK — p38 митоген-активируемая протеинкиназа; PrL — прелимбическая 
кора; VTA — вентральная область покрышки. 

INTRODUCTION
Kappa opioid receptors are involved in the 

modulation of various physiological and cognitive 
functions, including pain perception, stress response, 
and mood modulation [1]. We have previously 
demonstrated that the benzimidazole derivative 

RU-1205, a specific kappa-opioid receptor agonist, 
modulates neuronal activity [2, 3]. However, the full 
scope of its effects on neuronal activity remains to be 
fully elucidated.

Local field potentials (LFPs) reflect the collective 
electrical activity of large neuronal populations and 
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are a subject of comprehensive investigation in 
electrophysiology and neuroscience [4]. The analysis 
of LFP signals provides invaluable information for 
understanding the neuropharmacological profiles of 
pharmaceutical drugs and experimental compounds. 
Furthermore, the use of intracerebral electrodes 
enables the study of local changes in neuronal 
bioelectrical activity within target brain regions. 
Coherence analysis can also be employed to investigate 
functional connectivity between different brain areas, 
allowing for a more detailed examination of the 
interactions between various frequency components 
of the signal and the identification of complex 
dependencies that might be overlooked in spectral 
analysis alone [5].

Several studies have reported a pronounced 
influence of kappa-opioid agonists on brain 
bioelectrical activity. Following the administration of 
salvinorin-A, an increase in the power of delta (1.3–
3.5 Hz) and gamma (35–40 Hz) waves, accompanied 
by a decrease in alpha wave power (7.5–13 Hz), was 
observed on the electroencephalogram [6]. A study 
utilizing a Salvia divinorum Epling & Játiva extract 
revealed ECoG changes characterised by an increased 
spectral power density in signals from frontal leads and 
a decreased power in signals from occipital leads [7]. 
The kappa-opioid agonists enadoline and PD117302 
induced a dose-dependent shift in EEG power, 
particularly within the 4 to 8 Hz frequency range. 
These effects were abolished by norbinaltorphimine, 
confirming the involvement of kappa-opioid receptors 
in the observed effects [8].

Key brain regions associated with the analgesic and 
aversive effects of kappa-opioid agonists include the 
cerebral cortex (mPFC), hippocampus (Hipp), nucleus 
accumbens (NAc), ventral tegmental area (VTA), and 
amygdala (Amy) [9]. These areas exhibit the highest 
density of kappa-opioid receptors [10] and were 
therefore selected for this investigation.

The kappa-opioid receptor agonist RU-1205 is of 
particular interest due to its unique pharmacological 
profile. The compound does not produce aversive 
effects, as determined by the conditioned place 
preference test, nor does it induce tolerance upon 
chronic administration, distinguishing it from typical 
kappa-opioid agonists [11, 12]. To explain these 
properties, a multitarget mechanism of action was 
hypothesized, suggesting that the effects of RU-1205 
may involve not only the activation of kappa-opioid 
receptors but also an additional inhibitory effect 
on p38 MAP kinase. This hypothesis was based on 

previous experiments demonstrating that the aversive 
effects of kappa-opioid agonists could be completely 
prevented by the administration of the p38 inhibitor 
SB203580 [13]. It was also established that RU-1205 
could suppress the aversive effects of the kappa-opioid 
agonist U-50488 [11]. The hypothesis of p38-inhibitory 
activity can be tested using a drug discrimination 
paradigm. This methodology is widely employed in 
psychopharmacology and behavioral science to assess 
the perceptual and cognitive effects of various chemical 
substances, based on the principle that animals can be 
trained to distinguish between the interoceptive effects 
of different pharmacological agents.

THE AIM of this study was to evaluate the impact 
of RU-1205 on LFP activity in the cerebral cortex, 
hippocampus, medial prefrontal cortex, amygdala, 
nucleus accumbens, and ventral tegmental area. 
A further aim was to determine whether RU-1205 
possesses p38 MAPK-inhibitory properties by assessing 
the ability of rats to discriminate its effects from those of 
the p38 inhibitor SB203580. 

MATERIALS AND METHODS 

Study design
The study comprised two main stages. At 

the first stage, LFPs were recorded following 
intracerebroventricular administration of RU‑1205, and 
the resulting signals were subjected to spectral and 
coherence analyses. In the second stage, we analyzed 
the discriminative stimulus properties of RU-1205.

Test compounds
The study used 9-(2-morpholinoethyl)-2-(4-

fluorophenyl)imidazo[1,2-a]benzimidazole (RU-1205), 
synthesized at the Research Institute of Physical and 
Organic Chemistry of the Southern Federal University 
(RF Patent No. 2413512 C1, purity ≥ 99,46%), U-50488 
(Sigma Aldrich, USA), and SB203580 (Sigma Aldrich, 
USA).

Study duration and conditions
The study was conducted between July and 

September 2023. All experimental procedures were 
carried out at the Laboratory of Electrophysiological 
Research, Scientific Center for Innovative Drugs of the 
Volgograd State Medical University.

Ethics approval
Animal experiments were performed in compliance 

with the European Convention for the Protection 
of Vertebrate Animals used for Experimental and 
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Other Scientific Purposes, the principles of Good 
Laboratory Practice (GLP) (GOST 33044-2014, 2021), 
and the ARRIVE (Animal Research: Reporting of In 
Vivo Experiments) guidelines. The study protocol was 
approved by the Local Ethics Committee of Volgograd 
State Medical University (Registration number 
IRB00005839 IORG0004900, Minutes No. 2022/096, 
dated January 21, 2022).

Animals
The experiments were conducted on outbred male 

albino rats (n  =  41) weighing 260–280  g. The animals 
were housed under standard vivarium conditions with 
a 12-hour light-dark cycle and at the temperature of 
22 ± 2 °C, a relative humidity of 40–50%, and ad libitum 
access to food and water.

Surgical procedures
Under 2% isoflurane anesthesia (Laboratories 

Karizoo, S.A., Spain) administered via a rodent gas 
anesthesia system (Gas Anesthesia System-21100, 
Ugo Basile, Italy), stainless steel electrodes (0.1  mm 
diameter), insulated along their entire length except 
for the tip, were implanted into the right cerebral 
hemisphere according to the following stereotaxic 
coordinates relative to bregma:

Cortical electrodes: F  — anteroposterior 
(AP) = 0,00, mediolateral (ML) = +2.00; P — AP = -4.08, 
ML = +2.00; O — AP = -7.08, ML = +2.00.

Deep electrodes: prelimbic cortex (PrL) — AP = +2.7 mm,  
ML = +0.8 mm, dorsoventral (DV) = 3.8 mm; basolateral 
amygdala (BLA)  — AP  =  -2.8 mm, ML  =  +5–5.3 mm, 
DV  =  8.8 mm; hippocampus (Hipp)  — AP  =  –4.9 mm, 
ML  =  +4.8 mm, DV  =  6.0 mm; ventral tegmental area 
(VTA)  — AP  =  -5.2 mm, ML  =  +1,0 mm, DV  =  8.6 mm;  
nucleus accumbens (NAc)  — AP  =  +1.8 mm,  
ML = +1.6 mm, DV = 7.3 mm.

For intracerebroventricular injections, a 21-gauge 
stainless steel guide cannula was implanted into the 
left lateral ventricle using the following stereotaxic 
coordinates from bregma: AP = -0.6 mm, ML = -1.6 mm, 
DV = 4.0 mm. The electrodes and cannula were secured 
to the skull using dental acrylic (Protacryl-M, Ukraine) 
and two stainless steel screws.

Postoperatively, animals were housed individually 
and given 7 days to recover.

Signal recording
For the electrophysiological experiments, animals 

were assigned to two groups (n  =  16): 1) the first 
group (n = 8) received an intracerebroventricular (i.c.v.) 

injection of 5 μl of artificial cerebrospinal fluid (ACSF); 
2) the second group (n = 8) received RU-1205 at a dose 
of 350 μg / 5 μl i.c.v., equivalent to the intraperitoneal 
ED80 determined in analgesic activity assays. LFPs were 
recorded using a laboratory electroencephalograph 
(NVX-36, MKS, Russia). LFP activity was recorded in 
a monopolar montage against a common average 
reference at a sampling rate of 500 Hz. Thirty minutes 
after i.c.v. administration of the test substance or ACSF, 
LFPs were recorded for 10 minutes.

Spectral analysis
The signal was filtered using a basic FIR filter with 

a passband of 0,5 to 50 Hz. Subsequently, independent 
component analysis was applied to remove muscle 
artifacts. Spectral analysis was performed via a direct 
discrete Fourier transform for the following frequency 
bands: delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–12 Hz),  
beta (12–30 Hz), and gamma (30–50 Hz). The 
analysis was conducted in Python (v.3.11.3) using the  
MNE-Python package (v.1.6.1)1.

Coherence analysis
Magnitude-squared coherence [14] was calculated 

to quantify phase synchronization in the frequency 
domain between LFP signals (1-second epochs) for 
all electrode pairs using the ‘mscohere’ function 
(parameters: window  =  1  s, noverlap, nfft  =  500, 
fs = 500) in MATLAB (R2023b; MathWorks Inc., United 
States) under an individual license. The analysis was 
focused on the theta frequency range (4–8 Hz). Fisher’s 
z-transformation was applied to all coherence values 
for data normalization to permit parametric statistical 
testing.

Analysis of the discriminative stimulus 
properties of RU-1205
The drug discrimination paradigm is used to 

study the effects and mechanisms of action of 
pharmacological agents [15–17]. While conditioning 
can be established using food reinforcement, this 
typically requires 4–7 weeks of training. To accelerate 
the conditioning process, electrical stimulation of 
the ventral tegmental area was employed, which 
significantly shortened the training period.

For the experiment on the discriminative stimulus 
properties of RU-1205, intact rats (n  =  25) were 
implanted with a stimulating stainless steel electrode 
(0.1 mm) in the ventral tegmental area using the 

1 Zenodo. MNE-Python (v1.6.1). Available from: https://zenodo.org/
records/10519948 2
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following stereotaxic coordinates from bregma: 
AP = -5.2 mm, ML = +1.0 mm, DV = -8.6 mm.

During the initial training phase, animals were 
placed in an operant chamber with a single available 
lever (right or left) (Fig. 1). 10 min before the session, 
animals were injected with either: 1) RU-1205 at a 
dose of 350 μg / 5 μl i.c.v. (n = 9); 2) a combination of 
RU-1205 (350  μg) and naloxone (200 μg) in 5 μl ACSF 
i.c.v. (n = 8); 3) a combination of SB203580 (1 μg) and 
naloxone (200 μg) in 5 μl ACSF i.c.v. (n = 8); or a control 
solution of ACSF (5 μl)  /  naloxone (200  μg). Naloxone 
was co-administered with SB203580 in the third group 
to confirm that naloxone itself does not interfere with 
the discrimination of p38 MAPK-inhibitory activity. 
Furthermore, its inclusion with RU-1205 in tests 
against SB203580-trained animals was intended to 
prevent potential false-negative results, where the 
kappa-opioid component of RU-1205 might mask its 
discriminability. For half of the animals in each group, 
a left lever press was reinforced following control 
solution administration and a right lever press was 
reinforced following test compound administration; this 
was reversed for the other half.

A correct lever press resulted in the delivery of 
an electrical stimulus (24 biphasic 60  Hz pulses, 2  ms 
duration, fixed-ratio 1:1) to the reinforcement area 
via an isolated stimulator (A-M Systems MODEL 4100, 
USA). The current intensity was individually titrated 
(80–150  μA) to a level below that which elicited 
involuntary movements, avoidance behavior, or 
vocalizations. Over the subsequent 3–4 days, the fixed 
ratio was gradually increased to 10.

During the discrimination training phase, the fixed 
ratio was again progressively increased from 1 to 10. 
Each session lasted 20  min, with both levers available 
simultaneously. An incorrect lever press reset the 
response counter, requiring the animal to complete 
10 consecutive correct operant actions to receive 
reinforcement. The administration of ACSF  /  naloxone 
or test compounds was randomized across three 
weekly sessions (Table 1).

The criterion for acquisition of discrimination 
was defined as an accuracy of  ≥  80% on the drug-
appropriate lever in at least 8 of 10 consecutive 
sessions, after which the animal proceeded to the 
testing phase [16].

During the testing phase, substitution tests were 
conducted with ascending doses, as the discriminative 
stimulus properties of compounds are concentration-
dependent, making it impossible to predetermine 
subjectively equivalent doses. The first group of 

animals, trained to discriminate RU-1205, received 
RU-1205 (3.5, 35, or 350  μg, i.c.v.) 10  min before the 
session. Subsequently, these animals underwent 
substitution tests with the selective kappa-opioid 
agonist U-50488 (1, 10, 100  μg, i.c.v.) and the p38 
MAPK inhibitor SB203580 (0.01, 0.1, 1 μg, i.c.v.) to test 
for generalisation to the training drug.

During its testing phase, the third group received 
naloxone (200 μg, i.c.v.) 15  min prior to the session, 
followed by SB203580 (0.01, 0,1, 1 μg, i.c.v.) 10 minutes 
prior. These animals then underwent substitution tests 
with a combination of RU-1205 and naloxone (3.5, 
35, and 350 μg RU-1205  /  200 μg naloxone, i.c.v.). 
Tests were conducted twice weekly. Between test 
sessions, animals underwent maintenance training 
with ACSF  /  naloxone or the training dose of their 
respective compound. For each training drug, the 
mean number of sessions to acquisition (±  SD) was 
calculated, and dose-effect curves were constructed, 
plotting the percentage of responses on the drug-
associated lever. The experimental timeline is depicted  
in Figure 2.

Statistical data analysis
Statistical analysis was performed using GraphPad 

Prism 10.1 (Dotmatics, USA). Data were tested for 
normality using the Shapiro-Wilk test before applying 
parametric methods. Spectral and coherence analysis 
data are presented as mean  ±  standard error of the 
mean (M  ±  SEM). Discriminative stimulus data are 
presented as mean ± standard deviation (M  ±  SD), 
expressed as the percentage of responses on the 
drug-associated lever. An unpaired Student’s t-test 
was used for comparisons between two independent 
groups in the LFP analysis. Dose-effect curves were 
analyzed using a one-way repeated measures analysis 
of variance (ANOVA), followed by Dunnett’s post 
hoc test. A p  <  0.05 was considered statistically  
significant.

RESULTS
Analysis of LFP spectral characteristics revealed 

statistically significant changes following the 
administration of RU-1205 (350 μg, i.c.v.) compared 
to vehicle (p  <  0.05). Specifically, an increase in theta 
band power and a decrease in gamma band power 
were observed in frontal cortical recordings (Fig. 3a). In 
parietal cortical recordings, an increase in theta band 
power was also detected (Fig. 3b). Concurrently, a 
decrease in delta band power was observed in occipital 
cortical recordings (Fig. 3c).
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Figure 1 – Operant chamber with two levers, an electrical stimulator, and a personal computer  
for investigating neuroactive substances in a stimulus discrimination model.

Table 1 – Administration schedule for ACSF (5 μl), naloxone (200 μg),  
and test compounds during discrimination training.

Group Week 1 Week 2 Week 3
1 RU-1205 (350 μg i.c.v., n = 9) R-A-R-R-R-A-A A-R-R-A-R-A-A A-R-R-R-A-A-R

2 RU-1205 + naloxone  
(350 μg / 200 μg i.c.v., n = 8) Rn-N-Rn-N-N-Rn-Rn N-Rn-Rn-N-N-Rn-Rn Rn-N-N-Rn-Rn-Rn-N

3 SB203580 + naloxone 
(1 μg / 200 μg i.c.v., n=8) Sn-N-Sn-Sn-N-N-Sn N-Sn-N-Sn-Sn-N-Sn Sn-N-Sn-N-Sn-N-N

Note: A — ACSF; N — naloxone; R — RU-1205; Rn — RU-1205+naloxone; Sn — SB203580+naloxone.

Figure 2 – Schematic of the experimental design for studying the discriminative stimulus properties  
of the test compounds, encompassing training and testing phases.
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Figure 3 – Spectral power density of LFP oscillations following administration of RU-1205 (350 μg, i.c.v.).
Note: (a) — frontal lead (F); (b) — parietal lead (P); (c) — occipital lead (O); (d) — medial prefrontal cortex (mPFC); (e) — amygdala (Amy);  
(f) — hippocampus (Hipp); (g) — nucleus accumbens (NAc); (h) — ventral tegmental area (VTA). Each plot displays mean±SEM for spectral 

power density. Shaded areas indicate frequency bands with statistically significant power deviations relative to vehicle (p < 0.05).

(a)  

 

(b) 

(c) 

 

(d) 

(e) 
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Figure 4 – Effect of RU-1205 on theta band coherence between LFP signals.
Note: the diagram illustrates the connections (coherence values after Fisher’s z-transformation) that were statistically significantly altered by 

RU-1205 (350 μg, i.c.v.) compared to control (p < 0.05). F — frontal lead; P — parietal lead; O — occipital lead; mPFC — medial prefrontal cortex; 
Hipp — hippocampus.

Figure 5 – Effect of test compounds on the percentage of responses on the drug-appropriate lever  
in the stimulus discrimination paradigm.

Note: (a) — response of rats to RU-1205, U-50488, and SB203580 after training to discriminate RU-1205 (350 μg, i.c.v.); (b) — Response of rats 
to combinations of SB203580+naloxone and RU-1205 + naloxone after training to discriminate SB203580+naloxone (1 μg / 200 μg, i.c.v.). The 

highest dose of each test substance was normalized to 100%. Data are presented as mean±SD; p < 0.05 compared to control solution.

(a) 

 
(b) 
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RU-1205 led to increased theta power and 
suppressed gamma oscillations in the medial prefrontal 
cortex (Fig. 3d). A reduction in delta band power was 
also noted in the hippocampus (Fig. 3f). In contrast, 
no statistically significant changes were found in the 
amygdala, nucleus accumbens, or ventral tegmental 
area.

Next, theta band coherence was assessed across 
all electrode pairs. RU-1205 significantly decreased 
coherence for four pairs of leads compared to vehicle 
(p < 0.05), as presented in Fig. 4.

All rats in the first group acquired the 
discrimination in an average of 18  ±  3.0 sessions. 
During testing, the training dose of RU-1205 produced 
89.44  ±  6.45% responding on the drug-appropriate 
lever, and RU-1205 dose-dependently increased 
responding on this lever (F2.060, 16.48 = 208.1, p < 0.0001). 
U-50488 partially substituted for RU-1205, with 
rats generalizing to U-50488 up to 75.56  ±  6.95% 
at the 100 μg dose, 55.34% (±  12.52, SD) at  
10 μg, and 31.11  ±  11.89% at 1 μg (F2.221, 17.77 = 201.7,  
p < 0.0001) (Fig. 5a).

The second group of animals failed to reach the 
discrimination criterion during the training period.

The third group acquired the discrimination 
between SB203580 in combination with naloxone and 
vehicle in 17,5 ± 3,29 days. The discrimination exceeded 
the 80% criterion (F2.105, 14.74 = 245.7, p  <  0.0001), 
although the effect of the lowest dose (0.01 μg) did 
not differ significantly from control. In substitution 
tests, RU-1205 co-administered with naloxone did not 
significantly alter responding on the lever associated 
with SB203580, indicating that RU-1205 lacks additional 
p38 MAPK-inhibitory activity (Fig. 5b).

DISCUSSION
The effects of kappa-opioid agonists on 

electroencephalographic activity are well-
documented in both animal and human 
studies. This class of compounds induces 
specific alterations in cortical activity, notably 
a characteristic increase in power within the 
4–8 Hz range (theta activity enhancement) [8].  
The pharmaco-EEG profile of the canonical kappa-
opioid agonist U-50488 is consistent with a CNS 
depressant effect [18]. In studies of U-50488’s effects 
on LFP activity, significant changes have been identified 
in the nucleus accumbens (NAc) and ventral tegmental 
area (VTA) — key components of the reward system — 

as well as in the basolateral amygdala (BLA), a region 
associated with aversive states and depression. The 
location and nature of these changes align with the 
spectral correlates of aversive effects. Theta frequency 
in the prefrontal cortex and limbic areas (amygdala, 
hippocampus) is closely linked to fear and avoidance 
behaviors. It has been noted that gamma activity in 
the amygdala is suppressed during periods of fear 
[19, 20], while theta power in the mPFC-BLA circuit 
increases [21]. Stress can enhance theta waves in 
the dorsal hippocampus (dHPC), BLA, and amygdala, 
and gamma frequencies in the dHPC, BLA, and the 
infralimbic (IL) division of the medial prefrontal  
cortex [22]. Furthermore, studies have revealed 
abnormal LFP patterns in the NAc of individuals 
with depression [23]. In animal models of anxiety, 
an increase in theta band power (4–12 Hz) has been 
observed in the NAc [24]. Consequently, it is plausible 
that previously uncharacterized effects of RU-1205 
could be revealed through the analysis of its impact on 
brain bioelectrical activity.

RU-1205 did not induce significant LFP changes 
in the NAc, VTA [25], or Amy [26], which is consistent 
with in vivo data demonstrating its lack of dysphoric 
and depressant properties [11, 27]. The deviations in 
spectral characteristics from the F, P, mPFC, and Hipp 
leads in the RU-1205 group correspond with those 
recorded following U-50488 administration. Some of 
these changes could potentially serve as LFP markers 
for the analgesic effects of these kappa-opioid agonists. 
For instance, EEG gamma waves are reportedly 
associated with nociception, with gamma activity 
significantly increasing during a painful stimulus [28]. 
Additionally, data from human EEG studies indicate 
that chronic pain relief is associated with an increase in 
theta power over fronto-medial leads [29].

The subsequent phase of this research investigated 
coherence, a measure of synchrony between two 
LFP signals. Previous experiments with U-50488 
demonstrated pronounced alterations in phase 
synchronization [18]. A decrease in coherence 
was observed between cortical electrodes and 
between the prefrontal cortex, hippocampus, 
nucleus accumbens, and ventral tegmental 
area (effects also seen in depression, cognitive 
impairment, and with opioid analgesic use), while 
an increase in connectivity with the amygdala was 
noted (a characteristic sign of aversive action and 
stress response) [18]. It is well-established that 
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the amygdala and hippocampus are involved in 
pain perception and negative mood [30]. During 
states of fear, theta oscillations in the basolateral 
amygdala, hippocampus, and medial prefrontal 
cortex become synchronized, a phenomenon thought 
to underlie the response to aversive stimuli [19].  
Likhtik et al. also concluded that mPFC-BLA 
synchronization is a key factor in anxiogenesis  [21]. 
Notably, morphine has been shown to attenuate 
theta activity and enhance gamma activity in the 
NAc, while increasing NAc-VTA coherence [31, 32]; 
opposite effects were observed for U-50488 [18]. 
Therefore, these changes in synchrony may represent 
electrophysiological signatures of the euphoric versus 
dysphoric actions of substances.

RU-1205 did not produce the full spectrum of 
effects seen with U-50488. Its impact was limited to 
changes in cortical connectivity and a reduction in 
coherence between the prefrontal cortex and the 
hippocampus. These findings could be related to 
either the analgesic action of RU-1205 or potential 
cognitive side effects. For example, disruption of 
hippocampal-prefrontal connectivity has been shown 
to impair working memory [33], which is consistent 
with a known side effect of kappa-opioid agonists [34]. 
Importantly, no electrophysiological signs of aversive 
action were found for RU-1205. The mechanism 
underlying the aversive effects of kappa-opioid agonists 
(e.g., depression, sedation, dysphoria) is linked to 
intracellular signaling via the β-arrestin pathway and 
subsequent activation of p38 MAP kinase. The activity 
profile of RU-1205 might be explained by ligand-biased 
signaling (i.e., ligand-dependent selectivity for specific 
intracellular signaling pathways) [35, 36] or by a dual-
target mechanism (kappa-opioid receptor activation 
combined with p38 MAPK blockade). To test the latter 
hypothesis, we employed the drug discrimination 
paradigm.

Our results lead to the conclusion that the 
pharmacological effects of RU-1205 bear little 
resemblance to those of SB203580, while showing 
a high degree of similarity to U-50488. The inability 
of trained animals to discriminate the effects of RU-
1205 in the presence of naloxone suggests that the 
compound does not possess subjectively perceivable 
off-target activity.

The electrophysiological approach is a valuable 
tool for understanding how opioid compounds affect 
receptor signaling and physiological processes such as 

pain, respiration, and addiction [37]. Gillis et al., in a 
comprehensive comparative analysis of GPCR ligands, 
concluded that the pharmacological properties of 
biased agonists are determined not only by the degree 
of imbalance in post-receptor cascade activation but 
also by other factors [38], such as the intrinsic efficacy 
of the ligands. Birdsong and colleagues also underscore 
the importance of employing diverse approaches, 
particularly electrophysiology, in the study of ligand-
biased signaling [37]. Our research was limited to 
observing changes that are not direct readouts of 
secondary messenger activity. However, this limitation 
is offset by the versatility of our approach, which 
allows for the indirect assessment of a wide range 
of biochemical processes as they manifest in brain 
function and behavior.

Limitations of the study
This work has several methodological limitations. 

The experiments were conducted exclusively on 
adult male rats, which may limit the generalizability 
of the findings to females. Bioelectrical activity was 
recorded at a single, fixed 30-minute time point post-
injection, precluding analysis of earlier or later effects. 
The spectral analysis was confined to the standard 
EEG range (up to 50 Hz), excluding higher frequency 
components that could be informative for assessing 
synaptic activity. The study focused on a limited set 
of cortical and limbic structures, omitting other brain 
regions involved in opioid signaling. Finally, while the 
intracerebroventricular route of administration ensures 
direct brain exposure and controlled experimental 
conditions, its clinical relevance is limited, a factor that 
should be considered when interpreting the results.

CONCLUSION
In summary, we have established that, compared 

to the selective kappa-opioid agonist U-50488, RU-
1205 induces less pronounced changes in LFP activity 
and lacks the electrophysiological patterns associated 
with β-arrestin pathway activation and aversive 
effects. The electrophysiological effects of RU-1205 
were confined to cortical regions, the hippocampus, 
and the prefrontal cortex. The absence of behavioral 
evidence for p38-inhibitory activity, as confirmed 
in the drug discrimination model, underscores the 
relevance of investigating ligand-biased signaling as 
the potential mechanism for its unique profile in future  
studies.
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