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The aim. In this review, information obtained through a comprehensive scan of scientific resources on recent developments 
in the field of health regarding boric acids and BCCs is brought together, and current and future perspectives are presented. 
Matherial and methods. The literature studies on boron were collected using multiple databases (WOS, PubMed, Scopus, 
Science Direct, SciVerse, SciELO, Cochrane Library, Embase and Google Scholar). The health effects of boric acids and BCCs 
used in preclinical and clinical studies were systematically compiled.
Results and conclusion. Different natural and synthetic boron-containing compounds (BCCs) are increasingly used in the 
healthcare sector. To date, five BCCs drugs (bortezomib, crisaborole, ixazomib, tavaborole and vaborbactam) have been 
approved by the Food and Drug Administration, for diverse clinical applications. It is also understood that more than ten 
boron-based compounds (alabostat, sodium borocaptate, voromycin, TOL-463 and others) are being investigated in different 
clinical trial phases. In addition, it is seen that clinical studies are continuing for combinations of various drugs with BCCs for use 
in new indications. In addition, it is observed that boron and boron-containing compounds are widely used as supplements. 
This review also provides an overview of recent advances in the pharmacological activities of boric acids and BCCs, including 
antioxidant, anti-inflammatory, anti-atherosclerotic, anticancer, antimicrobial, antiparasitic, antiviral, antiprotozoal, 
cardioprotective, hepatoprotective, neuroprotective, osteoprotective, antidiabetic, anti-apoptotic, anti-obesity, ferroptosis 
properties, effects on immune system, antiepileptic, anti-Parkinson, and anti-Alzheimer’s activities and the mechanisms  
of action involved, obtained from both in vitro and in vivo studies. 
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Цель. В этом обзоре собрана информация, полученная в результате комплексного изучения научных ресурсов 
о последних достижениях в области здравоохранения, касающихся борных кислот и БСС, а также представлены 
текущие и будущие перспективы.
Материалы и методы. Источники литературы были собраны с использованием нескольких баз данных (WOS,  
PubMed, Scopus, Science Direct, SciVerse, SciELO, Cochrane Library, Embase и Академия Google). Были систематизированы 
данные о воздействии на здоровье борных кислот и БСС, используемых в доклинических и клинических исследованиях. 
Результаты и заключение. Различные природные и синтетические борсодержащие соединения (БСС) все чаще 
используются в здравоохранении. На сегодняшний день 5 препаратов БСС (бортезомиб, крисаборол, иксазомиб, 
таваборол и ваборбактам) одобрены Управление по контролю качества пищевых продуктов и лекарственных средств 
США (FDA) для различных клинических целей. Также известно, что более 10 соединений на основе бора (алабостат, 
борокаптат натрия, воромицин, TOL-463 и другие) исследуются на различных этапах клинических испытаний. Кроме 
того, как видно, продолжаются клинические исследования комбинаций различных лекарственных средств с БСС 
для применения по новым показаниям. Кроме того, отмечается, что бор и борсодержащие соединения широко 
используются в качестве пищевых добавок. В этом обзоре также представлен анализ последних достижений в 
области фармакологической активности борных кислот и БСС, включая антиоксидантные, противовоспалительные, 
антиатеросклеротические, противоопухолевые, антимикробные, противопаразитарные, противовирусные, 
противопротозойные, кардиопротекторные, гепатопротекторные, нейропротекторные, остеопротекторные, 
противодиабетические, антиапоптотические, против ожирения, ферроптоз, влияние на иммунную систему, 
противоэпилептическую, антипаркинсоническую и альцгеймеровскую активность и соответствующие механизмы 
действия, полученные в ходе исследований как in vitro, так и in vivo. 
Ключевые слова: борсодержащие соединения; фармакологический профиль; борсодержащие лекарственные 
средства; медицинское применение
Список сокращений: 4-OHFBA — 4-гидроксифенилбороновая кислота; АД — Болезнь Альцгеймера; АЛТ — 
аланинаминотрансфераза; APAP — ацетаминофен; АСТ — аспартаттрансаминаза; Aβ — бета-амилоид; БК — 
борная кислота; BAD — связанный с BCL2 агонист белка клеточной гибели; БСС — борсодержащие соединения; 
BCL-2 — белок, регулирующий уровень апоптоза в клетках; BIRC-2 — белок 2, содержащий бакуловирусный IAP; 
БНЗТ — бор-нейтронозахватная терапия; BODIPY — дипиррометен бора; BPH — тетраборат натрия пентагидрат; 
цАМФ — циклическиq аденозинмонофосфат; CAT — каталаза; ССЗ — сердечно-сосудистые заболевания; ЦФА — 
циклофосфамид; ДПП — дипептидилпептидаза; EMA — Европейское агентство лекарственных средств; FAP — белок 
активации фибробластов; ФАС — фетальный алкогольный синдром; FDA — Управление по контролю за продуктами 
и лекарствами США; ЖКТ — желудочно-кишечный тракт; GPx4 — глутатионпероксидаза 4; GSH — глутатион; hBN — 
гексагональный нитрид бора; HCV — вирус гепатита C; ЛПВП — липопротеины высокой плотности; СН — сердечная 
недостаточность; ВИЧ — вирус иммунодефицита человека; HUVEC — эндотелиальные клетки пупочной вены человека; 
I/R — ишемия и реперфузия; ИФН-γ — гамма-интерферон; ИЛ — интерлейкин; iNOS — индуцируемая синтаза оксида 
азота; ЛПНП — липопротеины низкой плотности; ЛПС — липополисахарид; LxR-α — альфа-Х-рецептора печени; МДА — 
малоновый диальдегид; МФ — фиброз миокарда; ИМ — инфаркт миокарда; МФП+ — 1-метил-4-фенилпиридиний; 
МРЗС — метициллинрезистентный золотистый стафилококк; НАД+ — никотинамидадениндинуклеотид; NF-κB — 
ядерный фактор каппа В; NO — оксид азота; OEA — олеоилэтаноламид; ПБНЗТ — протонно-бор-нейтронозахватная 
терапия; БП — болезнь Паркинсона; PPARγ — рецептор, активируемый пероксисомным пролифератором гамма; 
QCT — кверцетин; АФК — активные формы кислорода; СОД — супероксиддисмутаза; SREBP-1c — белок, связывающий 
регуляторный элемент стерола 1; TAC — общий антиоксидантный статус; TNF-α — фактор некроза опухоли альфа; 
OC — общий окислительный статус; ВОЗ — Всемирная организация здравоохранения.

INTRODUCTION
Boron is a naturally occurring trace element found 

in both the environment and living systems, where it 
plays diverse roles in numerous biological processes [1].  
It is distributed in the Earth’s crust, soil, and oceans, 
existing at specific concentrations. The average 

boron concentration in soil is 10–20 ppm [2]. Boron is  
found in various regions of the world, particularly in 
countries like the United States, Turkey, Brazil, Russia, 
and China, which have substantial boron reserves [3, 4]. 
By taking part in hydroxylation processes, boron plays 
a crucial function in the production and metabolism 
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of several reactions [5, 6]. Primarily, at the neutral pH  
levels present in most biological fluids, boron exists as 
boric acid (BA; H3BO3) and a small amount of borate 
anion (B(OH)4⁻). Both BA and borate tend to form 
complexes with sugars and other compounds containing 
trans-hydroxyl groups [7]. Boron compounds are known 
to be water-soluble. Both borax and BA are soluble in 
water, and it is well-known that the solubility of BA in 
water increases with rising temperatures [8]. 

Organoboron compounds are one of the most 
versatile classes of heteroatom-containing organic 
molecules [9]. This versatility is due to the unique  
chemical properties of boron. In analytical chemistry, 
the slightly Lewis acidic character of the boron atom 
is particularly valued in areas such as carbohydrate 
and fluoride determination [9]. This property plays 
an important role in analytical processes thanks to its  
ability to form tetracoordinate borates with fluoride 
anions and polyols [10, 11]. Boron is more electropositive 
than carbon, and this fundamental property is most 
efficiently utilized in organic synthesis, which has 
become one of the most important application areas 
of organoboron compounds [9]. This property of boron 
allows catalytic effects and selective reactions in various 
organic transformations. Given the covalent binding 
capacity of boron to biological targets, it can be assumed 
that organoboron compounds are simple electrophiles, 
similar to acrylates, epoxides and aldehydes, 
which are known electrophilic agents of chemical  
biology [12]. However, the behaviour of boron in 
biological systems is more complex, making it a unique 
chemical tool. According to studies, boron has the  
ability to form multiple covalent bonds with a protein, 
although boronic acids hydrate in aqueous solution 
and in some examples, boron was observed to 
interact indirectly with histidine via a bridging water  
molecule [13]. This feature enables boron to offer 
a unique binding mechanism in biological systems. 
Boron and its compounds are also used to develop 
methods for drug analysis [14–16] and to modulate 
different chemical reactions [17–19]. The role of boron 
compounds in chemical biology and drug discovery is 
increasing. The unique chemical properties, selective 
binding mechanisms and low toxicity of boron make it 
a valuable element in the development of therapeutic 
agents. 

Boron concentrations vary between species, and 
low boron levels inhibit growth [20–22]. Recognized 
as a trace element, boron has low toxicity in mammals 
and is essential for the development of animals and 
human bodies [23, 24]. Additionally, optimal boron 
intake is suggested to positively influence bone 
growth and development [25, 26], the proliferation 
and differentiation of blood cells, and brain  
functions [27–29]. However, it has also been reported 
that excessive intake of boron can be harmful [30, 31].  
Experimental boron applications in animals and  
humans have been shown to result in significant 
improvements in immunity, antioxidant effects, 
growth, and embryonic development [1]. Natural 
boron compounds possess antibacterial, antiviral, and 
anticancer properties [32, 33]. Boron is necessary for a 
wide range of metabolic processes in microorganisms, 
including antibiotic action, nitrogen fixation, and 
quorum sensing [34]. Furthermore, thanks to their 
anti-inflammatory properties, these compounds are 
used as dietary supplements for the treatment of 
neuroinflammation and neurodegeneration [35].  
Approximately 80% of the global population use 
conventional medicine for healthcare [36]. In 
individuals with boron deficiency, reductions in high-
frequency brain activity have been associated with 
memory impairment [37–39]. Borax, one of the boron 
compounds, exhibits antiseptic, antifungal, and antiviral 
effects, as well as anti-osteoporotic, anti-inflammatory, 
hypoglycemic, and anticoagulant properties [40, 41]. 
Because of its ability to scavenge free radicals, it has 
also been reported to have antioxidant qualities. It 
inhibits proliferation in tumor cells and shows anticancer 
effects by inducing apoptosis [42–44]. BA has also been 
reported in numerous studies to have antioxidant [45],  
anti-genotoxic [46], anti-carcinogenic [47], non- 
cytotoxic [48], and metal-chelating properties [49, 50]. 
Boron-containing compounds (BCCs) have a wide range 
of pharmacological activities (Fig. 1).

Currently, medicinal chemists are investigating 
boron-based small compounds due to the Lewis acid 
characteristics of boron, which render it reactive 
towards the nucleophiles found in enzymes, nucleic 
acids, and carbohydrates [51]. Recently, the U.S. Food 
and Drug Administration (FDA) sanctioned three  
BCCs: two from the BA category and one from the 
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benzoxazole category [51, 52]. Boronic acids serve as 
transition state analogs for enzymes such as proteases 
and lactamases, so efficiently suppressing their  
function. Boron has garnered considerable interest 
owing to the FDA approval of multiple boron- 
containing pharmaceuticals and the existence of 
additional related pharmacological compounds 
undergoing clinical testing [6, 51]. It has received 
significant attention due to FDA approval of multiple 
boron-containing drugs and the existence of additional 
related pharmacological compounds undergoing  
clinical testing [51, 52]. Information was obtained 
from the European Medicines Agency (EMA), the FDA 
website, the DrugBank database and various scientific 
sources. Boron-containing drugs that have received FDA 
approval to date are shown in Table 1.

In addition to the above drugs that have received 
FDA approval, various boron and its compounds are 
being investigated in clinical studies (phases 1 to 3).  
Among the molecules that have received FDA 
approval, clinical phase studies continue for  
GSK8175/GSK2878175 molecule in hepatitis  
C virus (HCV) clinical research, ganfeborole 
hydrochloride/(GSK656) molecule in tuberculosis 
research, xeruborbactam/(QPX7728) molecule as 
an antibacterial, and AN-2898 molecule in topical 
dermatitis. Several BCCs are currently undergoing clinical 
trials, exploring their potential therapeutic applications 
across various medical fields. Table 2 below provides a 
detailed summary of these compounds.

Numerous BCCs have been studied, acknowledged 
for their advantageous qualities, and distributed 
internationally [1, 69, 70]. BA, borinic acids, and their 
derivatives, such as borinates, oxoboranes, and boronic 
acid derivatives, serve as enzyme inhibitors and regulate 
the opening and closing of membrane ion channels [71]. 
Research demonstrates that boron, alongside oxygen, 
was essential in the first synthesis of RNA molecules 
on Earth [72]. Due to its pronounced electrophilic 
characteristics, boron and its derivatives have been 
incorporated into various therapeutic candidates, 
leading to considerable study in recent years on the 
synthesis of innovative boron-based structures [73–
75]. Historically, the pharmaceutical use of boron was 
primarily limited to antiseptics; however, its therapeutic 
range has broadened in recent decades to encompass 

antibiotics and anticancer drugs [76–78]. A notable 
characteristic of the boron atom is its ability to absorb 
neutrons, which has facilitated the advancement of 
many drug discovery platforms [79]. Furthermore, 
the documentation of newly synthesized boron-based 
chemicals affecting metabolic processes in both animals 
and humans is increasing [80]. The chemical structures 
of some boron compounds are presented in Table 3.

Boron is known to play a role in growth due to its 
ability to strengthen cell membranes [81]. It is essential 
for plant growth and development, contributing 
to healthy growth and productivity in plants [82]. 
Approximately 90% of boron in plant cells has been 
estimated to reside in the cell walls [81]. Boron can 
form complexes with compounds such as polyhydroxyl 
polymers, pectins, and polyols, which are components 
of the cell wall [82, 83]. Thus, by forming esters with  
cis-diol components of the cell wall, boron aids in 
stabilizing and synthesizing the cell wall, providing 
shape, strength, and rigidity to the cell [1, 81].  
Plants are also known to be impacted by BA, which 
is usually found in their cell walls [7, 84–86]. To fully  
grasp the potential of boron in medicinal chemistry, 
more research is necessary, as demonstrated by the drug 
analogs that exhibit a range of biological activities with 
a single boron atom or boron cluster molecules. This 
study will highlight many of the uses of boron chemistry 
in the medical profession, however there have been 
other reviews and books recently that demonstrate the 
advancements in boron chemistry and its applications.

THE AIM. This review aims to provide a 
comprehensive overview of the expanding role of BA and  
BCCs in the healthcare field. In recent years, both natural 
and synthetic BCCs have garnered significant attention 
due to their diverse pharmacological properties and 
growing clinical relevance. Several BCCs have already 
received regulatory approval for medical use, while 
many others are currently undergoing various phases 
of clinical evaluation. In addition, new therapeutic 
strategies involving the combination of BCCs with other 
pharmaceutical agents are being actively explored.  
This review focuses on the broad spectrum of  
biological activities exhibited by BA and BCCs, 
including antioxidant, anti-inflammatory, anticancer, 
antimicrobial, antiviral, antiparasitic, neuroprotective, 
cardioprotective, hepatoprotective, osteoprotective, 
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and antidiabetic effects. The mechanisms of action 
underlying these activities, as demonstrated in both 
in vitro and in vivo studies, are discussed in detail. 
Furthermore, the review highlights the use of boron-
based compounds as dietary supplements and  
examines their potential contributions to human  
health. Scientific data were systematically collected  
from multiple reputable databases, including Web of 
Science, PubMed, Scopus, ScienceDirect, SciVerse, 
SciELO, Cochrane Library, Embase and Google 
Scholar. Overall, this review aims to synthesize recent 
advancements, evaluate current applications, and 
provide insights into future directions for the use  
of BA and BCCs in medical and therapeutic contexts.

MATERIALS AND METHODS
This systematic review was conducted in 

accordance with PRISMA guidelines and was registered 
in the International Prospective Register of Systematic  
Reviews. A literature search was carried out across 
multiple electronic databases PubMed, Web of Science, 
Scopus, Google Scholar, Cochrane Library, and Embase 
to identify relevant studies published in English, 
with no time restrictions. The search terms were 
designed to align with the research objectives, using 
Boolean combinations such as: “pharmacokinetics,” 
“pharmacodynamics,” “bioavailability,” “therapeutic 
potential,” “biological activity,” “pharmacological 
activity,” “antimicrobial activity,” “clinical trial,” “toxicity,” 
and other terms related to “boric acid” or “boron-
containing compounds/BCCs”. A systematic search 
conducted across multiple scientific databases yielded a 
total of 312 eligible studies (n = 312), comprising both 
original research articles and review papers, which  
were subsequently included in the present analysis.

RESULTS AND DISCUSSION

The pharmacokinetic properties of boric acid 
and boron-containing compounds 

Absorption of boric acid 
and boron-containing compounds
Humans have good absorption of boron from the 

gastrointestinal (GI) tract [87]. Research has indicated 
that around 90% of boron ingested orally is absorbed by 
both humans and animals [87]. According to the World 
Health Organization (WHO), humans absorb 0.44 μg 

of boron per day through their inhaled air, 1.2 mg per 
day on average through their diet, and 0.1–0.3 mg 
per liter of boron through their drinking water [88].  
Vanderpool et al (1994), the GI tract absorbs more 
than 90% of boron taken orally in 3 hours, and the  
absorption is finished in 24 hours [89]. Furthermore, 
absorption through the skin is one of the ways BA enters 
the body. Although studies have shown that the passage 
through intact skin is low, it is stated that absorption 
may increase in the presence of damaged skin [90].

Distribution of boric acid 
and boron-containing compounds
BA is found in large quantities in bodily water in 

humans (98.4% as BA and 1.6% as the, B(OH)4) [91]. The 
distribution of BA in humans and animals is comparable. 
Not all BCCs can reach the entire organism, even those 
with a significant volume of dissemination [92]. This 
implies that certain barriers contain transporters. 
Additionally, following BA treatment, bone boron levels 
seem to be higher than those in plasma or soft tissues, 
while boron levels in soft tissues are equal to those in 
plasma [93]. Furthermore, it has also been shown that 
some boron-containing nanoparticles and BCCs tend to 
preferentially accumulate in specific organs, such as the 
brain or heart [94].

Metabolism of and biotransformation 
of boric acid and boron-containing compounds
In both humans and animals, BA is not metabolized. 

Because breaking the B-O bond requires a lot of 
energy (523 kJ/mol), biological systems are unable to 
metabolize BA. Many inorganic borates are metabolized 
at low concentrations, despite the fact that BA is not. 
And also, they produce BA as the primary metabolite 
at physiological pH on mucosal surfaces prior to  
absorption [93]. Additionally, it is known that 
BCCs can undergo biotransformation, and that this 
biotransformation frequently involves boron-free bonds, 
even though there are no known enzyme processes that 
break boron-containing bonds [95].

Elimination and excretion of boric acid 
and boron-containing compounds 
According to the statistics, hepatic and renal 

clearance are the main factors influencing boron 
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excretion [95]. Boron is mostly expelled through  
urine, with only trace amounts seen in perspiration, 
breath, and bile, and to a lesser degree through  
stool (2%) [96]. Studies show that the amount of fecal 
and urine excretion increased along with the dietary 
intake of boron [1]. Despite having fairly similar renal 
clearance values (39 and 55 mL/min/1.73 m2 in humans;  
40 mL/min/1.73 m2 in mice), rats and mice typically 
have higher rates of renal clearance than humans, which 
suggests the possibility of different mechanisms at  
play [97]. Six volunteers were given roughly 131 mg of 
BA in water (750 mg) and water-emulsifying ointment  
(740–1473 mg, or roughly 130–258 mg BA) 
by WHO (2009) and they discovered that, on  
average, 92–94% of the BA that was given was eliminated 
in the urine after 96 hours [98]. 

Therapeutic potential and biological activities 
of boric acid and boron-containing compounds

Anti-inflammatory activity of boric acid 
and boron-containing compounds
Inflammation serves as an initial defense  

mechanism against harming agents, notably toxins, 
pathogens, and allergens [99]. When the acute 
inflammatory response persists, the immune system 
engages in a more intricate, prolonged reaction. The 
chronic inflammatory response is typically of low 
intensity and encompasses numerous proinflammatory 
cellular elements, including leukocytes predominantly 
consisting of macrophages and lymphocytes. Due to 
their effectiveness in alleviating pain and inflammation, 
nonsteroidal anti-inflammatory drugs rank among 
the most utilized medications, solidifying their status 
in the WHO Model List of Essential Medicines [100]. 
Non-steroidal anti-inflammatory medicines account 
for 30% of hospital admissions due to preventable 
adverse drug reactions, primarily resulting in bleeding, 
myocardial infarction (MI), cerebrovascular accident, 
and renal impairment [101]. According to the research, 
it investigated the potential of BA as a novel anti-
inflammatory medication [102–105]. Anti-inflammatory 
effects of BA have been demonstrated in vitro [106–
109] and in vivo [110–112]. The effects of BA on anti-
inflammatory parameters are presented schematically 
in Figure 2. A study by Gundogdu et al (2024), BA has  
shown potential effectiveness in decreasing  

inflammation in a rat model of knee osteoarthritis [113].  
Tekeli et al (2022) study that supplementing with BA 
regulates the inflammatory alterations associated 
with ovariectomy [114]. Moreover, Cao et al (2008) 
demonstrated that BA was proven to possess strong 
anti-inflammatory action through the inhibition of 
the nuclear factor kappa B (NF-κB) signaling pathway 
and possesses therapeutic potential, especially in 
chronic inflammatory diseases such as rheumatoid 
arthritis [102]. In that study, it was shown that the BA  
significantly decreased the expression of pro-
inflammatory cytokines, suppressed inflammatory cell 
infiltration and that its effect on tumor necrosis factor-
alpha (TNF-α) secretion could be induced via thiol-
dependent mechanism [102].

Anticancer activity of boric acid 
and boron-containing compounds
Anticancer activity denotes the capacity of chemicals  

to impede the growth and multiplication of cancer 
cells or to trigger their apoptosis [115, 116]. Numerous 
epidemiological and experimental investigations have 
shown that BA may have anti-cancer effects on a range  
of cancer types. Given the lack of definitive treatment 
for all the different types of cancers, these studies 
looked into the potential of this substance as a novel 
therapeutic option for alleviating symptoms and slowing 
disease progression. Series of recent studies showed 
effect of BA on hepatocellular carcinoma, endometrial 
and ovarian cancer, colon cancer, lung cancer, prostate 
cancer, breast cancer, glioblastoma and thyroid  
cancer [117–120]. The cytotoxic role of BA application 
on glioblastoma treatment was investigated by  
Aydin et al (2021). It was observed that  
high-dose BA applications had a fatal effect on 
glioblastoma cells, but non-toxic dosages of BA 
application did not inhibit proliferation of these 
cells. As a result of their study, high dosage of BA 
solution application has been found to be a promising 
strategy for treating glioblastoma [121]. Furthermore,  
Lin et al (2013) demonstrated that rats with 
hepatocellular carcinoma treated with boron neutron 
capture treatment seemed to have smaller tumors on 
ultrasound images and clearly had less blood flow to 
the tumor. On the 80th day following boron neutron 
capture treatment, the liver lesion had vanished; 
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a recovery of values to normal levels was also  
observed [122]. 

BA and borax dramatically decreased U-87MG cell 
viability in a concentration-dependent manner, according 
to Turkez et al (2021). Moreover, they discovered that 
whereas boron compounds improved the activities of 
the superoxide dismutase (SOD) and catalase (CAT) 
enzymes and raised malondialdehyde (MDA) levels 
and total oxidative status (TOS), they simultaneously 
decreased glutathione (GSH) levels and total  
antioxidant capacity (TAC) [123]. In studies examining 
the effects of BA on breast cancer cell lines (MCF-7 
and MDA-MB-231), BA was found to inhibit the growth 
of breast cancer cells in both 2D and 3D culture media [120].  
Furthermore, BA and calcium fructoborate were 
reported to inhibit cell proliferation in MDA-MB-231 
cancer cell lines [124]. BA is also thought to exert 
a mechanism of action by partially influencing the 
DNA damage response in breast cancer cells [125].  
Based on these findings, studies on breast cancer and 
BA suggest that BA could be proposed as a chemical 
protective agent [126, 127]. Besides, the mechanisms 
of induction of apoptosis by boron against cancer 
cells are multilevel. Boron induces mitochondrial  
membrane permeability due to DNA damage, which 
triggers apoptosis [112, 115, 117, 128]. During the 
process, the pro-apoptotic proteins BAX, BAK, CASP-3, 
and B-cell lymphoma 2 (BCL-2) associated agonist of cell 
death (BAD) were upregulated, and anti-apoptotic genes 
like baculoviral IAP repeat containing-2 (BIRC-2), BIRC-5, 
and BCL-2 were downregulated. Additionally, cell cycle 
arrest was induced by boron in the G2/M and Sub-G1 
phases, inhibiting the proliferation of cancer cells [112, 
115, 117, 128]. These findings were further supported 
by detection methods such as ELISA, western blot, and 
flow cytometry, hence positioning boron as one of 
the promising candidates in cancer therapies. Further 
studies are needed to confirm the selectivity of the 
anticancer effects of boron (Fig. 3). 

Activity of boric acid 
and boron-containing compounds on apoptosis
Apoptosis functions as a critical physiological 

mechanism that controls cell population expansion, 
either to preserve tissue homeostasis or to clear 
potentially hazardous cells, such as those that suffered 
DNA damage. In cancer, cell-autonomous apoptosis 
is a prevalent tumor suppressor mechanism, which is 

utilized in cancer therapy [129]. Currently, research is 
investigating the potential of boron compounds as a 
new anti-apoptotic drug. A study by Hilal et al (2024) 
has provided evidence for BA induced apoptosis 
by downregulation of anti-apoptotic genes and 
upregulation of pro-apoptotic genes [130]. In their 
study, Cengiz et al (2019) investigated the toxicity 
induced by cyclophosphamide (CP) exposure in rat livers 
and the potential protective effects of BA. In contrast to 
the CP group, TAC marker levels increased while alanine 
transaminase (ALT), aspartate transaminase (AST),  
alkalen phosphatase (ALP), TOS, oxidative stress  
markers, and caspase-3 levels reduced in the BA and  
CP group. These results demonstrated that BA effectively 
shielded the liver against CP-induced apoptosis and 
histological alterations [131].

Boron neutron captures therapy on cancer activity
Boron neutron capture therapy (BNCT), a 

new treatment approach intended to improve the 
therapeutic ratio for malignancies that have historically 
been difficult to cure, is the main biological use of boron-
based compounds [132–134]. By carefully concentrating 
boron compounds within tumor cells and then exposing 
them to epithermal neutron beam radiation, which 
specifically kills the tumor cells, BNCT is showing promise 
as a cancer treatment method. The ability of BNCT to 
deposit a significant dosage gradient between tumor 
cells and healthy cells is one of its special qualities. The 
most advantageous characteristics of boron compounds 
are there is minimal systemic toxicity, strong tumor 
absorption in normal tissues, significant tumor/brain 
and tumor/blood concentration ratios (>3–4:1), tumor 
concentrations of 20–35 mg 10B/g tumor, quick removal 
from blood and normal tissues, and tumor persistence 
during BNCT [135, 136]. The most common methods for 
delivering boron are boronophenylalanine and sodium 
borocaptate [137]. The basis for BNCT treatment is 
nuclear capture and fission when nonradioactive 
boron-10 is irradiated with low thermal neutrons 
(<0.025 eV), which produces a recoiling lithium-7 
(10B5 + 1n0(th) → [11B5]* →4He2(α)+7Li3 + 2.38 MeV) 
and an alpha particle. A type of high linear energy 
transfer particle known as an alpha particle deposits 
energy over a distance of less than 10 μm, or around 
one cell›s diameter [135, 137, 138]. The mechanism  
of BNCT in the tumor cell is shown in Figure 4.

Head and neck cancer, Glioblastoma multiforme, 
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recurrent lung cancer, squamous cell carcinomas, salivary 
gland carcinomas, sarcomas, recurrent malignant 
meningioma, multifocal hepatocellular carcinoma and 
extramammary Paget’s disease are among the cancers 
that BNCT has been used to treat thus far [139–141].

Proton boron capture therapy on cancer activity
Proton boron capture therapy (PBCT) is a new 

treatment strategy that uses protons to create a 
physical-driven radiosensitization. By taking use of a 
nuclear fusion reaction between low-energy protons 
and 11B atoms, p + 11B→ 3α (p-B), it increases the 
biological efficacy of protons by releasing α-particles 
that are thought to cause double-strand breaks in DNA 
across Spread-Out Bragg Peak [142]. This method makes 
it possible to limit the radiosensitization to the object 
that the proton beam strikes [143]. Alpha particles with 
energies between 2 and 5 MeV release almost all of the 
energy of the nuclear process. These alpha particles 
harm cells close to the reaction site because of their 
short linear travel and strong linear energy transfer inside 
the tissue. By selecting the boron compounds that are 
preferentially deposited inside the tumor, it is possible 
to optimize the dosage in the tumor location and limit  
it outside [144]. There are in-vitro studies to evaluate  
the effectiveness of PBCT on cancer. For this, the inclusion 
of boron in the U-87 MG glioblastoma cell line and the 
DU145 prostate cancer cell line is known to decrease  
cell survival by a factor of 2 following proton  
irradiation in the PBCT experiments [143, 145–147].

Anticancer activity of boron-dipyrromethene 
Thanks to their special photophysical characteristics 

and functionalization potential, near-infrared boron–
dipyrrin (BODIPY) and their analogs have been the  
subject of much research [148]. BODIPY derivatives 
are widely used in the biomedical field, especially 
in biological imaging and photodynamic therapy 
applications due to their high photostability, strong 
fluorescence properties and wide absorption-emission 
ranges [149–152]. In recent years, the importance 
of fluorescent dyes in biological imaging and sensor 
applications has been increasing [151]. In this case, 
BODIPYs stand out with their superior photophysical 
properties compared to other fluorescent dyes, such as 
narrow absorption and emission bands, high fluorescence 
intensity and simple signal modulation for practical  
applications [152]. Owing to these properties, 

BODIPYs are widely used in areas such as cell imaging, 
biosensor design and photodynamic therapy [153]. 
These compounds, whose photophysical properties 
can be optimised by structural modifications, can be 
used as targeted diagnostic agents and offer significant 
advantages especially in the specific detection of 
cancer cells [151, 152]. Jang et al (2019) developed  
a BODIPY platform activated by 365 nm UV light. This 
system shows promise for targeted therapy and imaging 
by simultaneously providing both anticancer drug 
release and ‘lighten-up’ FLI [154]. In another study, 
Wang et al (2019) developed an innovative therapeutic 
and diagnostic platform comprising an H₂S-sensitive 
NIR probe (NIR-BSO) and a potent photosensitiser 
(3I-BODIPY) for accurate cancer imaging and on-demand 
image-guided photodynamic therapy [155].

BODIPY-based theranostic agents have a wide 
range of uses in the biomedical field for both diagnostic 
and therapeutic purposes. It allows deep tissue 
analysis with photoacoustic imaging, monitoring of 
cellular biomarkers with fluorescence imaging, and 
can target cancer cells by activating with light through 
photothermal and photodynamic therapies [156]. It 
can also be used as a drug carrier in chemotherapy,  
providing controlled release and monitoring tissue 
temperature with photothermal imaging. Thanks to 
these versatile properties, BODIPY derivatives are 
promising agents for advanced biomedical research and 
cancer treatments.

Effect of boric acid and boron-containing 
compounds on cell death via ferroptosis
Ferroptosis is a non-apoptotic iron-dependent 

form of programmed cell death. It is morphologically, 
biochemically and genetically different from other types 
of programmed cell death such as apoptosis, necrosis 
and autophagy. The effects of boron on ferroptosis 
have recently attracted attention.  Ferroptosis leads 
to damage to the mitochondrial membrane and 
destruction of mitochondrion crystals. This disrupts 
the energy production of the cell and triggers  
cell death [157]. However, iron is involved in the 
process of lipid peroxidation, which leads to oxidation 
of intracellular lipids and cell death [158]. In addition, 
proteins that regulate iron metabolism (e.g. IRP [Iron 
Regulatory Protein] и IRE [Iron Response Element]) 
may cause a disturbance of iron balance, which may 
contribute to the occurrence of ferroptosis [159].
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Table 1 – Molecular Architectures and clinical applications of FDA-approved boron-containing drugs

Drug Name /  
FDA Approed 
Date

Indications Mechanism of action Chemical structure References

Tavaborole /  
July 7, 2014

Fungal or yeast 
infections of 
the toenails

It inhibits cytosolic leucyl-transfer RNA 
synthetase which plays a key role in fungal 
essential protein synthesis

[53]

Vaborbactam /  
August 29, 
2017

Urinary tract 
infections Non-β-lactam β-lactamase inhibitor [54]

Bortezomib /  
May 13, 2003

Multiple 
myeloma

Reversibly binds to the chymotrypsin-
like subunit of the 26S proteasome, 
resulting in its inhibition and preventing 
the degradation of various pro-apoptotic 
factors

[55] 

Crisaborole /  
December 14, 
2016

Atopic 
dermatitis 
(eczema)

Broad-spectrum anti-inflammatory activity 
by mainly targeting PDE4 enzyme that is 
a key regulator of inflammatory cytokine 
production

[56]

Ixazomib 
(Citrate) /  
November 20, 
2015

Multiple 
myeloma

Blocks protein degradation by inhibiting 
the 20S catalytic subunit of the 26S 
proteasome

[57]

Note: The images of the chemical structures are taken from PubChem. PDE4 — phosphodiesterase 4. 
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Table 2 – Boron-containing compounds evaluated in clinical trials (phases I–III)

Chemical Name Indications Mechanism of Action Chemical Structure References

Talabostat 
(PT-100)

Non-small-cell 
lung cancer 
and malignant 
melanoma

Inhibits tumor-associated FAP 
and DPPs [58]

TOL-463

Bacterial 
Vaginosis and 
Vulvovaginal 
Candidiasis

Targeting vaginal bacterial and 
fungal biofilms [59]

Sodium 
Borocaptate

Glioblastoma 
multiforme

When the blood-brain barrier 
is disrupted, it penetrates into 
the brain and affects the cells.

[60]

AN-2898 Atopic dermatitis
3’,5’-cyclic-AMP 
phosphodiesterase  
(4A-4B-4D) inhibitor

[61]

Boromycin

Gram-positive 
bacterial 
infections, 
coccidiosis, 
and protozoal 
infections

Negatively affecting the 
cytoplasmic membrane, 
resulting in the loss of 
potassium ions from the cell

[62]

GSK8175/
GSK2878175

Anti-hepatitis C 
virus NS5B inhibitor [63]
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Chemical Name Indications Mechanism of Action Chemical Structure References

Ganfeborole/
(GSK656)

Anti Tuberculosis 
agent

Ganfeborole is a first-in-class 
benzoxaborole inhibiting the 
Mycobacterium tuberculosis 
leucyl-tRNA synthetase.

[64]

Xeruborbactam/ 
(QPX7728)

Ultra-broad- 
antibacterial 
spectrum

Beta-lactamase inhibitor [65]

Acoziborole African 
trypanosomiasis

Specifically block the active 
site and mRNA processing by 
parasite, but not host CPSF3

[66]

Taniborbactam Acute 
pyelonephritis

Reversible, covalent inhibitor 
of serine β-lactamases and 
as a competitive inhibitor of 
metallo-β-lactamase

[67]

Borofalan Malignant 
Glioma

Molecular selectivity towards 
the targeted tumor cell, the 
nucleus or DNA is targeted

[68]

Note: The images of the chemical structures are taken from PubChem. FAP — fibroblast activation protein-α; DPPs — dipeptidyl peptidases; 
NS5B — non-nucleoside polymerase.
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Table 3 – The chemical structure of some boron compounds

Boric Acid Boronic Acid Methyl Ester Boron Citrate 4-Hydroxyphenylboronic acid 
(4-OHFBA)

Boronic Acid Borinic acid, methyl ester (Methyl)oxoborane

 
Rosocyanine

Boroxine

(Methyl)amine borane

Calcium Fructoborate
Borole

Benzoboroxole
Carboxy-benzoxaborole

Borax

Sodium Tetraborate 
Decahydrate

Note: The images of the chemical structures are taken from PubChem. 
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Anticancer
Antiobesity

Antiepileptic
Antiparkinson
Antialzheimer

Antiatherosclerosis
Wound-healing

Antioxidant
Antiinflamotory

Immunomodulatory
Antiapoptic

Cardioprotective
Hepatoprotective
Neuroprotective
Osteoprotective

Antiviral
Antibacterial
Antiparastic

Antiprotozoal
Antifungal

BCCs

Ferroptosis properties

Figure 1 – Pharmacological and therapeutic potential of boron-containing compounds.
Note: The figure was created using Microsoft Office software. BCCs — boron-containing compounds.

Figure 2 – Effects of boric acid on various anti-inflammatory parameters.
Note: The figure was created using Microsoft Office software. Akt — Protein Kinase B; CAT — Catalase; COX — Cytochrome c Oxidase; CLC — 
Glutamate Cysteine Ligase ERK — Extracellular Signal-Regulated Kinases; GSH — Reduced Glutathione; GPx — Glutathione Peroxidase; GR — 
Glutathione Reductase; GST — Glutathione S-Transferases; HO-1 — Heme oxygenase 1; iNOS — Inducible Nitric Oxide Synthase; JNK — c-Jun 

N-terminal kinase. MAPK — Mitogen-Activated Protein Kinase; PI3K — phosphatidylinositol-3-kinase; MPO — Myeloperoxidase; NF-κB — 
Nuclear Factor kappa B; Nrf2 — Nuclear Erythroid 2-related Factor 2; NOX — oxidase; NQO-1 — Quinone Oxidoreductase; ROS — reactive 

oxygen species; XO — xanthine oxidase; SOD — superoxide dismutase. 
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Figure 3 – Molecular base anticancer mechanism of boron-containing compounds.
Note: The figure was created using Microsoft Office software.

Figure 4 – Tumor cells that are treated with thermal neutrons preferentially contain injected boron compounds.
Note: After that, the boron reacts to producing an inert lithium ion and an alpha particle. The tumor cell is then harmed by the alpha particle 

within a limited range. The figure was created using Microsoft Office software.
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Although data on the effects of boron on 
 ferroptosis are limited, the antioxidant properties 
of boron and its potential regulatory effects on iron 
metabolism suggest that these two processes may be 
related [157, 158, 160]. Boron, especially in the form 
of BA, has been shown to affect ferroptosis pathways. 
BA is the predominant form of boron in plasma. 
Boron has been identified as a potential modulator of 
ferroptosis, a regulated form of cell death characterized 
by iron-dependent lipid peroxidation [161]. The effects 
of boron on ferroptosis are particularly important in 
the context of cancer therapy, where induction of 
ferroptosis may overcome resistance to conventional 
therapies, suggesting its potential as a therapeutic  
agent in cancer treatment [162, 163]. BA has been shown 
to induce ferroptosis in glioblastoma cells by affecting 
the semaphorin-neuropilin signaling pathway [163]. 
This induction is dose-dependent and is associated 
with increased levels of total oxidant molecules and 
caspase proteins, which are markers of cell death. BA 
disrupts the SEMA3F pathway, leading to decreased cell  
proliferation and increased apoptosis in tumour  
cells [163]. Induction of ferroptosis by boron is mediated 
by modulation of key ferroptosis markers such as 
glutathione peroxidase 4 (GPх4) and ACSL4. These 
markers are very important in maintaining the redox 
balance in cells and their disruption leads to increased  
lipid peroxidation and cell death [161, 163]. 

The use of boron in combination with other 
ferroptosis inducers such as nanoparticles may further 
increase therapeutic efficacy. Nanoparticles can increase 
their concentrations in tumor tissues and reduce 
systemic toxicity at lower doses in the administration 

of ferroptosis-inducing agents [164–166]. Considering 
that cancer cells may be more vulnerable to agents 
 that disrupt redox balance and increase oxidative 
stress, high concentrations of BA may be more 
harmful to tumor cells through modulation of energy  
production [167, 168]. In this perspective, BA and 
boronates can be used as chemosensitising agents to 
induce/enhance ferroptosis [169]. However, boron 
may also play a role in the regulation of ferroptosis by 
cross-linking with other ions such as iron ions. This cross 
interaction may further contribute to the induction of 
ferroptosis in cancer cells by affecting oxidative stress 
and lipid peroxidation [170]. It has also been shown 
that boron dissociates phosphorus in iron alloys. This 
suggests that boron may modulate iron metabolism, 
an important component of ferroptosis, and cell death 
by altering the availability and distribution of iron 
within cells [166, 168]. In conclusion, while boron 
shows promise in modulating ferroptosis and improving 
cancer therapy, it is important to consider ferroptosis 
in a broader context. The balance between oxidative 
stress and antioxidant defenses is crucial in determining 
cell fate and the role of boron should be understood  
within this framework. Furthermore, the potential 
side effects and optimal dosage of boron in clinical  
settings need to be further investigated to ensure its safe 
and effective use in cancer therapy.

Antioxidant activity of boric acid 
and boron-containing compounds
Oxidative stress has been linked to a variety of diseases,  

including chronic obstructive pulmonary disease, 
atherosclerosis, cancer and Alzheimer’s disease (AD),  

Figure 5 – Near-infrared boron–dipyrrin (BODIPY)
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revealing the numerous routes via which oxidants cause 
cellular damage [171–174]. However, the degree to 
which oxidative stress participates in the pathogenesis 
of diseases is quite diverse, therefore the effectiveness 
of strengthening antioxidant defense may be limited 
with regard to some diseases [171–173]. Oxidative 
stress is characterized by a disrupted balance between  
reactive oxygen species (ROS) generation and 
antioxidant effectiveness [172]. A compromised 
antioxidant system could contribute as well to disease  
pathogenesis [173, 175].

Boron can act as an indirect proton donor, influencing 
the structure and function of cell membranes [176]. 
Therefore, it has been proposed that cyclic adenosine 
monophosphates (cAMP), whose concentrations 
rise as a result of boron’s effects, may disrupt the 
metabolism of mitochondrial oxidative phosphorylation 
and inhibits the activities of hydrolytic enzymes [177]. 
The antioxidative properties of boron compounds such 
as BA, borax, colemanite, and ulexite in neuronal cells 
are thought to be linked to their roles in mitochondrial 
dynamics [178].

The investigations looked into BA as a potential 
novel antioxidant medication. BA therapy reduced 
lipid peroxidation, decreased the expression of 
proinflammatory cytokines, and enhanced the 
function of the antioxidant defense system in the cell 
line. Also, the findings revealed that BA effectively 
lowered formaldehyde-induced oxidative stress and 
inflammation by blocking lipid peroxidation and 
preventing the depletion of antioxidant enzymes [179]. 
Gündoğdu et al (2024) established in their studies 
that BA protects gastric mucosa from ethanol-induced 
injury by modifying the oxidative and inflammatory 
responses [106]. By analyzing prenatal alcohol-induced 
oxidative stress in the cerebral cortex of newborn rat 
pups and assessing the protective and advantageous 
effects of BA supplementation in rats with fetal 
alcohol syndrome (FAS), Sogut et al (2015) examined 
the impact of BA administration on FAS. The findings 
showed that alcohol may harm rat pups’ cerebral cortex 
and that BA may be useful in antioxidant defenses 
against oxidative stress brought on by prenatal alcohol  
exposure [180]. Moreover, different compounds have 
been shown to enhance antioxidant enzyme activities 
at low supplementation levels without causing  

oxidative stress in blood cells [181]. Ince et al (2014) 
found that 20 mg/kg BA treatment alleviated focal gliosis 
and neuronal degeneration in the brains of rats treated 
with CP [182]. Another study reported that 100 mg/kg  
BA partially reduced the effects of arsenic-induced 
oxidative stress [183]. In conclusion, these findings 
suggest that BA at various doses may reduce the effects 
of oxidative stress in tissues by supporting antioxidant 
enzymes. Additionally, it has been proposed that BA 
could protect nerve morphology by influencing cellular 
antioxidant mechanisms and safeguarding axons from 
the destructive effects of oxidative stress [184].

Antimicrobial activities of boric acid 
and boron-containing compounds
Recent years included an enormous rise in the 

literature of boron and its anti-microbial traits. 
The emergence of FDA-approved boron-based 
pharmaceuticals has altered the view of boron as 
an injurious agent [79]. Boron and metals are being 
researched as potential treatments for microbial 
resistance and as competitors to antibiotics [185]. 
The current scientific literature substantially supports 
boron’s antibacterial, antifungal and antiviral traits. 
However, future research might focus on gauging their 
mechanisms of action to try to clarify the possible uses 
in medical use.

Antibacterial activity of boric acid 
and boron-containing compounds
Modern pharmacology places a strong emphasis 

on the creation of antimicrobial agents that are both 
safe and effective [186]. Based on existing experiments 
obtained from scientific literature, it has been discovered 
that boron and its compounds possess antibacterial 
properties. Sayin and Ucan (2016) showed that BA has 
demonstrated antibacterial and anti-biofilm effects 
on specific bacterial strains. This capability suggests 
that new methods could be developed for the use of 
various functional microorganism tests in medical and 
industrial applications [187]. Celebi et al (2024) studied 
the antibacterial activity of nine boron derivatives 
against biofilm-forming pathogenic bacteria [188]. They 
found that sodium metaborate tetrahydrate is effective 
against all pathogens and identified methicillin-resistant 
Staphylococcus aureus (MRSA) as the bacterium with 
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the strongest biofilm-forming ability. Additionally, 
boron derivatives were determined to be non-toxic to 
fibroblast cells (L929) at low concentrations (1 µg/L) and 
exhibited significant inhibitory activity against biofilm-
forming pathogens during short treatment periods [188]. 
According to the study by Uzun-Yaylacı et al (2021), 
3.09 and 1.54 mg/mL concentrations of BA have been 
shown to be effective against aquatic pathogens such 
as Aeromonas veronii [189]. Also, the blend of ascorbic 
acid and curcumin-BA has been proved to be useful in 
treating Salmonella enteritidis infections [190]. In the 
study by Brittingham and Wilson (2014) demonstrating 
the antimicrobial effect of BA on Trichomonas  
vaginalis, BA concentrations above 0.1% had a 
important effect on the growth and viability of  
T. vaginalis. Concentrations of 0.4% or greater completely 
inhibited the growth of parasites. Additionally, BA was 
shown to exhibit strong antimicrobial activity against  
T. vaginalis across a broad physiological pH range [191].  
Moreover, boron-based compounds such as boronic 
acids have demonstrated strong antibacterial activity 
as β-lactamase inhibitors against Gram-negative 
bacteria. Boronic acids and borinic esters have shown 
versatile potential in antibacterial strategies by 
targeting penicillin-binding proteins, quorum sensing 
mechanisms, and methyltransferases. Optimization 
of these compounds could enable the development 
of new and effective treatments against resistant  
bacteria [192]. However, further molecular studies 
are needed to better understand the effects and  
mechanisms of these compounds.

Antifungal activity of boric acid 
and boron-containing compounds
The natural human microbiota of the skin, oral, 

GI, and genitourinary tracts includes Candida species. 
Only a small number of the 200 or so species in the 
genus Candida are opportunistic infections in humans. 
Candida-caused invasive infections are particularly 
significant in severely ill patients admitted to intensive  
care units [193]. The most prevalent species linked to 
invasive fungal infections is Candida albicans [194].  
Currently, boron components are known to have 
antifungal effects [195]. BA has been used as a 
topical antifungal drug for vaginal infections for many  
years [196]. In the study conducted by  

De Seta et al (2009), C. albicans strains were inhibited 
at intravaginally achievable concentrations. They 
reported that BA exhibited fungistatic properties, as 
indicated by a decrease in CO2 production. BA works by 
decreasing oxidative metabolism, which lowers cellular 
ergosterol production and interferes with hyphae 
transformation by preventing apical development 
through cytoskeletal disruption [197]. Likewise, BA 
breaks down cytoskeletal processes, such as actin 
rearrangement, in Candida hyphal production, leading to 
aberrant hyphal development, according to Pointer and  
colleagues [198]. Larsen et al (2018) aimed to investigate 
whether organoboron compounds provide antifungal 
activity similar to BA and whether they possess other 
beneficial properties in addition to their antifungal 
effects. To this end, they examined the sensitivity of 
Candida species to BA and organoboron compounds. 
The study found that C. glabrata was inhibited by 
both BA and organoboron compounds, and that 
organoboron compounds have potential as topical  
therapeutics [199]. Furthermore, the in vitro 
antifungal effects of pure boron were investigated 
against yeasts and molds isolated from patients with 
superficial mycosis caused by Candida, Trichophyton, 
and Aspergillus fumigatus. The study’s findings 
demonstrated that boron prevented the growth of 
molds and yeasts. At very low quantities, boron showed 
antifungal action when diluted in distilled water 
with an alkaline pH. As a result, it is proposed that  
boron might be a substitute for conventional antifungals 
in the treatment of superficial mycosis [200].

Antiviral activity of boric acid 
and boron-containing compounds
In late December 2019, the severe acute respiratory 

syndrome coronavirus 2 (SARS-CoV-2) appeared, 
causing a pandemic of acute respiratory disease 
known as “coronavirus disease 2019” (COVID-19), 
which poses a hazard to human health [201, 202]. The 
COVID-19 pandemic poses an obstacle in determining 
efficacious drug therapy approaches for both prevention 
and treatment [201, 202]. According to recent data, 
COVID-19 infection may be effectively managed by 
therapeutic drugs with antiviral, anti-inflammatory, 
and immunomodulatory qualities [202, 203]. 
Thus, boron citrate and oleoylethanolamide (OEA)  



ОБЗОР

219

DOI: 10.19163/2307-9266-2025-13-3-202-238
(PHARMACY & PHARMACOLOGY)

Том 13, Выпуск 3, 2025

have been investigated in COVID-19 patients  
by Akbari et al (2022). The study’s results showed 
that O2 saturation and respiratory rate were markedly 
enhanced by boron citrate supplementation, either 
by itself or in conjunction with OEA. Furthermore, 
the boron citrate and combination groups showed 
notable increases in the number of white blood cells 
and lymphocytes [204]. Moreover, curcumin has a 
unique chemical structure that makes it a potential 
chelating agent [205]. Its esters interact with BA to 
generate rosocyanine, a complex that is frequently  
used to measure the quantity of boron in different  
organic and inorganic matrices [206]. Curcumin 
decreased the inhibition activity of human 
immunodeficiency virus (HIV)-1 and HIV-2 proteases, 
whereas rosocyanine boosted the inhibition 
activity of HIV-1 and HIV-2 proteases by more than  
ten times [207]. These substances are thought to have 
potential applications as medications in the future 
to enhance blood circulation throughout the body 
and prevent pandemic viral attacks like SARS-CoV-2. 
In conclusion, a number of boron-based chemicals 
could be made to prevent COVID-19 viral illness and 
curcumin’s capacity to create boron complexes [208]. 
Additionally, in silico studies have demonstrated that  
BCCs may exhibit antiviral effects against viral conditions 
through docking analysis [209, 210].

Antiprotozoal and antiparasitic activities 
of boric acid and boron-containing 
compounds
Parasitic diseases are among the world’s most 

severe and widespread infections, affecting millions of 
morbidities and deaths each year. Presently, however, 
climate and vector ecological changes, a major increase 
in international travel, armed conflicts, human and 
animal migration have impacted the transmission of 
various parasitic diseases in developed countries [211].  
Using a variety of dosage schedules, four case reports 
demonstrated Trichomonas vaginalis clearance with BA. 
According to in vitro research, BA has pH-independent 
anti-T. vaginalis action. Intravaginal BA may offer a 
well-tolerated alternative anti-infective treatment 
that reduces the population’s need of systemic 
antibiotics if it is shown to be safe and effective [212]. 
BA was used to amidate benzenesulfonamides in  

Ugwu et al (2018) investigation on the synthesis of 
novel carboxamide derivatives comprising substituted 
benzenesulfonamides against human African 
trypanosomiasis parasite infection. The work showed 
that novel carboxamides with exceptional yields were 
generated by amidation of benzenesulfonamides and 
p-aminobenzoic acid mediated by BA [213]. Particularly 
in the underdeveloped countries, infectious disorders 
brought on by protozoan parasites constitute a  
substantial unmet medical need [214–216]. Trypanosoma 
brucei, Plasmodium falciparum, and T. cruzi are among 
the significant protozoan diseases that have been found 
to be susceptible to the intriguing activity of a class of 
boron-containing chemicals known as benzoxaboroles in 
recent years [217]. Lindenthal et al (2005) demonstrated 
that the boronate analog MLN-273 inhibits  
P. falciparum’s intraerythrocytic development and  
P. berghei’s exoerythrocytic development [218]. ZL3B  
and bortezomib, two boronates, were shown by 
Reynold et al (2007) to be strong inhibitors of the  
intraerythrocytic cycle in P. falciparum strains that  
are both drug-sensitive and resistant [219].

Antiobesity activity of boric acid 
and boron-containing compounds
The WHO considers the rapid rises in obesity 

prevalence across all age categories, particularly since 
the 1970s, to constitute a global obesity epidemic.  
Today, obesity affects roughly 650 million adults, 
and 340 million children and adolescents aged 5  
to 19 years [220, 221]. Given the absence of a definitive 
treatment for obesity, these studies explored the 
potential of this substance as a novel therapeutic 
option aimed at alleviating symptoms and modifying 
disease progression. It was reported in literature  
that BA inhibited adipogenesis in common cellular 
models. In the model by Doğan et al (2017), BA and 
sodium pentaborate pentahydrate (Na2B4O7·10H2O) 
therapy suppressed the expression of adipogenesis-
related proteins and genes, as well as decreased 
mitotic clonal expansion through cell cycle gene  
regulation [222]. Aysan et al (2011) have investigated 
the influence of oral BA administration on body weight 
and have discovered that a very low dose (0.2 mg/kg)  
oral BA administration results in substantial body 
weight reduction in mice [223]. Also, Farrin et al (2022)  
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have conducted a meta-analysis to analyze  
the effect of BA on body weight. According to findings, 
BA administration orally resulted in a considerable  
decrease in body weight [224]. 

Antidiabetic activity of boric acid 
and boron-containing compounds
Diabetes mellitus is a severe global public health 

issue. It affects 463 million people globally, and by 
2045 this figure may rise to 700 million [225]. Diabetes  
mellitus is a metabolic disorder defined by high or 
low levels of fasting blood glucose, caused by the 
partial or complete lack of insulin hormone and the 
equivalent damage to carbohydrate, lipid, and protein  
metabolism [226]. Based on the lack of definitive 
treatment for diabetic diseases, the studies have 
investigated the potential of this substance as a novel 
therapeutic option for alleviating symptoms and slowing 
disease progression. Previous study by Cakir et al (2018) 
found that increased serum lipid peroxidation levels 
with diabetes significantly decreased, and although not 
statistically significant, serum TAC levels came towards 
those of the control group; additionally, insignificant 
increases in high-density lipoprotein cholesterol (HDL-C)  
levels were observed in experimental diabetic 
administration BA on rats with two groups [227]. In 
addition, lipase activities, low-density lipoprotein (LDL)  
and blood glucose serum cholesterol have reduced 
significantly in the diabetes BA with one group [227].  
According to the findings of this recent study  
by Cakir (2024), the increase in total cholesterol 
triglyceride, glucose, LDL-cholesterol levels and ALT, 
AST activities in streptozotocin-induced groups were 
decreased with BA administration [228]. While HDL-C 
levels dramatically reduced in the streptozotocin 
group, they approached control group levels following 
BA treatment. Although peptide levels increased  
statistically significantly following BA administration, 
they did not approach the control group values. Cakir’s 
research suggests that BA might be an appealing 
therapeutic element [228].

Effects of boric acid and boron-containing 
compounds on the immune system
Immunity is essential for preserving health because 

it shields the body from infection by both endogenous 

and foreign pathogens [229]. There have been some 
documented effects of boron compounds on the 
immune system [230–233]. Recent studies on the impact 
of BA on the differentiation of lymphocyte clusters in 
mice and rats are among these [229, 234]. Routray and 
Ali (2016) demonstrated that T and B-cell populations 
in mice significantly increased following oral borax 
delivery, as seen by an increase in CD4 and CD19 [234]. 
Also, the lipopolysaccharide (LPS)-primed macrophages’ 
production of TNF-α, interleukin 6 (IL-6), IL-1β, nitric 
oxide (NO), and inducible nitric oxide synthase (iNOS) 
was induced by borax [234]. Jin et al (2017) showed 
that adding rats’ drinking water with 20 and 40 mg/L 
of boron raised their serum immunoglobulin G levels, 
hemoglobin concentrations, leukocyte, erythrocyte, 
lymphocyte, and monocyte counts, induced an increase 
in splenic CD3+ T cells [229]. This improved both general 
and specific immune responses. Furthermore, it raised 
the amount of CD4+ T cells in the spleen and the number 
of CD4+/CD8+ T cells. This led to the spleen producing 
and secreting more IL-2, interferon-gamma (IFN-γ), and 
IL-4, which improved cellular immune activities [229].

Antiatherosclerotic activity of boric acid 
and boron-containing compounds
Plaque buildup inside arteries causes atherosclerosis, 

a cardiovascular condition that can result in fatalities, 
heart attacks, and strokes [235]. Development and 
progression of atherosclerotic coronary arteries result in 
coronary heart disease. Depending on degree of artery 
damage, angina or heart attack occurs [236, 237]. Among 
the main treatments for atherosclerosis are statins, 
which lower serum levels of LDL and cholesterol and stop 
the production of foam cells [238]. Also, antioxidant-
based treatments have been explored because 
inflammation and lipoprotein oxidation play important 
roles in the development of atherosclerosis [238]. Boron 
may be a viable alternative for maintaining a healthy 
cardiovascular system because it plays a role in the 
control of signaling pathways related to inflammation, 
oxidative stress, or lipid metabolism [239]. Some studies 
have shown that BCCs may provide protection against 
atherosclerosis through their antioxidant effect by 
reducing ROS and SOD activities [240–242]. Moreover, 
a study by Asadi et al (2023), in which animal models 
with atherosclerosis were given 4 mg/kg BA, showed 
that BA could prevent atherosclerosis over time by 
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preventing lipid buildup and cholesterol absorption  
from tissues [235].

Effects of boric acid and boron-containing 
compounds on wound healing
One of the biggest and fastest-growing issues in 

the world today is wounds. The incidence of chronic 
wounds has increased, particularly as a result of the fast 
aging of the population and the rise in the prevalence of 
chronic illnesses [243]. Chronic wounds are those that 
exhibit abnormalities during the healing process [244]. 
Chronic wounds are particularly vulnerable to bacterial 
colonization and biofilm formation because of the lack of 
the epithelial barrier and the high pH of the surrounding 
environment. This can lead to severe oxidative stress, an 
inflammatory storm, and impaired angiogenesis. Wound 
healing is further hampered by these pathological 
alterations [245]. The process of wound healing is 
dynamic and involves the cooperative action of several 
cells, growth factors, proteins, and cytokines [246]. It is 
well known that BA, a dynamic and advantageous trace 
element, contributes to the healing of wounds [1, 247]. 
Because of their effects on the extracellular matrix, BA 
shows a notable improvement in the wound healing 
process [248]. According to a study by Roy et al (2010), 
which used hydrogel wound dressing containing BA, 
hydrogels were very flexible and had potent antibacterial 
qualities. So, the use of boron as a wound dressing 
care material was advised [249]. Demirci et al (2016) 
showed exceptional antibacterial properties of BA and 
NaB against bacteria, yeast, and fungi in addition to 
considerably increasing the proliferation, migration, 
essential growth factors, and gene expression levels of 
dermal cells. Furthermore, they demonstrated that the 
gel formulation containing NaB improved wound healing 
rates and histopathological scores in diabetic animal 
models created in rats [250]. Moreover, the most recent 
findings show that mixing NaB with pluronic block 
polymers increases cell migration, SOD activity, gene 
expression linked to essential wound contraction and 
healing of human primary fibroblast cells, and collagen 
deposition [251]. In vitro study’s findings showed that 
erbium borate nanoparticles are a suitable substance 
for scarless wound healing [252]. Kurtoğlu and Karataş (2009)  
demonstrated that wounds that occurred in the 
lower limbs as a result of diabetes caused weak 

blood circulation, and that wound dressings having 
boron content were useful in wound healing when 
systemic antibiotic treatment was ineffective [253].  
Chupakhin et al (2017) also found that hydrogels 
containing silicone and boron enhanced wound healing, 
regeneration, and antibacterial activity in an in vitro  
investigation [254]. In conclusion, despite the fact that 
the precise mechanism of boron in wound healing 
remains unclear, some boron compounds like BA show 
a variety of therapeutic actions during the healing 
process. These include encouraging angiogenesis, 
inducing TNF-α secretion by macrophages, increasing 
neutrophil migration and activation, boosting fibroblast 
proliferation and activation, encouraging keratinocyte 
migration and proliferation, and exhibiting antibacterial 
properties [255, 256].

Protective roles of boric acid 
and boron-containing compounds

Cardioprotective effect 
About 30% of deaths worldwide are caused 

by cardiovascular diseases (CD), which include a 
variety of conditions affecting the heart and blood 
vessels as well as the negative consequences they are  
linked to [257]. It has long been recognized that a lack 
of boron in soils causes a decrease in BCCs in food, 
which has been linked to an increased risk of arthritis, 
an inflammatory condition that is also linked to 
cardiovascular health [258, 259]. Potential advantages 
for the cardiovascular system are suggested by the 
beneficial impact of natural organic BCCs on lipid 
levels. The two main risk factors for CD are oxidative 
stress and chronic low-grade inflammation. Through 
nicotinamide adenine dinucleotide (NAD+) and/or 
cyclic adenosine diphosphate ribose binding, BCCs have 
been demonstrated in numerous studies to regulate 
oxidative stress and inflammatory responses [90, 
260]. Additionally, a study by Karimkhani et al (2021) 
concluded that in their study’s statistical analysis 
that BA had preventive effects on cellular damage in 
MI; electrocardiography and light microscope results  
backing up the findings [261]. Furthermore, almost all 
types of cardiac disorders, especially heart failure (HF), 
are related to myocardial fibrosis (MF). Trans-differentiation 
of fibroblasts, the appearance of myofibroblasts, and 
the early activation of pro-fibrotic signaling pathways 
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prior to unfavorable ventricular remodeling are the 
earliest characteristics of MF. In a rat model of MI-
induced HF, the study examining the effects of borax, 
a sodium salt of boron, supplementation on cardiac 
function, MF, apoptosis, and regeneration revealed 
that borax treatment significantly improved systolic and 
diastolic functions when compared to the control [262].  
Borax treatment showed a significant decrease in 
MF and apoptosis in injured hearts, underscoring 
borax’s preventive role in ischemic hearts [262].  
Additionally, compared to the saline group, the MI 
borax-treated rats showed ten times as many nuclei 
positively stained for the cell cycle marker Ki67 in thin 
myocardial slices. Crucially, it may promote the entry of 
cardiomyocytes into the cell cycle and maybe promote 
the regeneration of damaged cardiac muscle [262].

Hepatoprotective effect 
The liver is essential for the body’s metabolism 

and toxin removal. Liver ailments are among the most 
urgent global health concerns [263, 264]. Herbal and 
natural chemicals play a major role in the curing of 
liver disorders [265]. By regulating insulin release 
and aiding in the metabolism of energy substrates, 
boron salts may play a crucial role in regulating lipid 
and energy metabolism [266]. It has been stated by 
Abdik et al (2021) that giving mice NaB might lower 
the weight of their liver and white adipose tissue 
while also suppressing adipogenic genes [267].  
The study by Şahin et al (2023) also revealed that NaB and 
BA supplementation boosted peroxisome proliferator-
activated receptor gamma (PPARγ) expression 
while decreased sterol regulatory element-binding 
protein 1c (SREBP-1c), liver X receptor alpha (LxR-α),  
and FAS expression in the liver of rats, which is in line 
with earlier research showing the effects of BA and 
NaB on genes associated to lipid metabolism [267– 
269]. Furthermore, it was shown that by blocking 
LxR-α and the LxR-α/SREBP-1c/FAS cascade, 
BA and NaB could control lipogenesis in the rat 
liver [268]. Moreover, liver damage occurs with 
an overdose of acetaminophen (APAP) [270].  
Accordingly, Çelik and Aydın (2022) investigated the efficacy 
of 4-hydroxyphenylboronic acid (4-OHFBA), a boronic 
acid derivative, in APAP-induced liver damage [271].  
It was demonstrated that increased AST and ALT levels, 
markers of cell death and liver cell damage, decreased 

with 4-OHFBA treatment, while cell viability in the 
HepG2 cell line increased. These findings suggest that 
4-OHFBA may be effective in APAP-induced cell death 
and liver damage and boron compounds’ antioxidant 
and anti-inflammatory properties have considerable 
promise in liver injury treatment [271].

Neuroprotective effect 
Pharmacological study indicates that boron 

compounds have neuroprotective properties [35]. 
Several studies in recent years have shown that BA has 
a strong neuroprotective effect in a range of in vitro 
and in vivo models of neuronal injury. According to 
Turkez et al (2022), boron compounds, particularly BA, 
borax, and ulexite, can be given to people at specific 
dosages to help avoid hematological and neurological  
diseases [178]. Many neurological illnesses are 
characterized by oxidative stress [272]. Anti-inflammatory 
and antioxidant abilities of boron compounds can lessen 
neuroinflammation and protect nerves [273].

Effects of boric acid and boron-containing 
compounds on diseases

Antiparkinson’s disease activity 
Parkinson’s disease (PD) affects an estimated 

8.5 million individuals worldwide, as reported by 
the WHO [274]. PD is a neurodegenerative condition 
defined by dopaminergic cell death in the substantia 
nigra compacta nigra pars, and the disease produces 
uncontrollable movements known as motor symptoms 
such as bradykinesia, tremors, dystonia and rigidity [275,  
276]. Given the absence of a definitive treatment  
for PD, the studies explored the potential of this 
substance as a novel therapeutic option aimed at 
alleviating symptoms and modifying disease progression. 

BA’s pharmacological, behavioral, and 
biochemical effects on rats with experimental PD 
produced by rotenone were examined in a study by  
Ozdemir et al (2022), BA showed dose-related 
improvement, notably in the brain tissue and there 
was noticed significant rise in tyrosine hydroxylase 
immunoreactivity [276]. In a study investigating 
the ameliorative effects of hexagonal boron 
nitride nanoparticles (hBNs) against 1-methyl-4-
phenylpyridinium (MPP+) toxicity in an experimental 
PD model, the results showed that hBNs increased 
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cell viability and that TAS and TOS analyses revealed 
an increase in antioxidant capacity and a reduction in 
oxidant levels after hBN application [277]. Furthermore, 
the administration of hBNs considerably inhibited 
MPP+-induced apoptosis. Therefore, the results suggest 
that hBNs have great potential against MPP+ toxicity 
and may serve as a novel neuroprotective agent in PD  
treatment [277]. In the study by Yavuz et al (2023), 
the effects of BA and quercetin (QCT) on oxidative 
stress markers and behavioral tests were investigated. 
These results of the study indicate that the combined 
application of BA and QCT positively affects the oxidant-
antioxidant balance by preventing the pathogenesis of 
PD [278].

Antialzheimer’s disease activity 
AD, which accounts for 60-70% of dementia cases, 

is a neurological ailment that normally begins slowly 
and worsens with time [279]. Approximately 60% of 
the world’s 55 million dementia patients live in low- 
and middle-income countries [280]. Aggregation of 
amyloid beta (Aβ) peptides is a key component in 
the etiopathogenesis of AD [281]. Pharmacological 
therapies are currently being researched that will block 
or decrease the nerve deterioration that causes AD, 
and the FDA approved drugs only temporarily ease 
symptoms by boosting neurotransmitter levels in the 
brain [282]. In AD, the most common kind of dementia, 
oxidative stress plays a significant pathophysiological 
role [283]. BA has an important function in protecting 
the brain by lowering lipid peroxidation and increasing 
antioxidant defense [280]. Özdemir et al (2023) showed 
that in rats with streptozotocin-induced dementia, BA 
administration improved learning and memory abilities 
by lowering oxidative stress [283]. The stereological 
and histopathological findings of Çolak et al (2011) 
demonstrated that BA, as a proteasome inhibitor, can 
lessen the negative impacts of aluminum chloride on 
the cerebral cortex [284]. Moreover, in both in vitro and 
in vivo models of AD, some studies have discovered that 
certain BCC treatments, such as 2-aminoethylborinic 
acid or borolatonin, significantly reduced inflammation 
in a pathogenic association with Aβ buildup [35]. Also, 
Lu et al (2018) produced a number of new BCCs that act 
as multi-target-directed ligands against AD. According 
to the study, these substances have a strong capacity 

to prevent self-induced Aβ aggregation and may have 
antioxidant properties [285].

Effects on osteoporosis
Osteoporosis affects an estimated 200 million 

people worldwide, with one in every three women over 
the age of 50 and one in every five males over the age 
of 50 suffering from osteoporosis-related fractures. 
Osteoporosis is a metabolic bone disorder characterized 
by microarchitectural deterioration and low bone 
mass of the bone tissue, resulting in lesser bone 
strength and an increased risk of low-energy fractures 
or fragility [286–290]. Boron contributes favorably 
to calcium metabolism, which is a highly significant 
factor in preventing osteoporosis and bone loss [88]. 
Xu et al (2023) in their in vitro studies demonstrated 
that BA therapy for 5 days suppressed osteoclastic 
bone resorption and osteoclast formation in a dose-
dependent manner [291]. BA reduced the expression of 
osteoclast markers such as cathepsin K, nuclear factor of  
activated T cells 1, c-Fos and tartrate-resistant acid 
phosphatase. BA also inhibited receptor activator of NF-κB  
ligand-induced activation of the protein kinase R-like 
endoplasmic reticulum kinase-eukaryotic initiation 
factor 2α pathway, as shown by immunoblotting studies. 
According to their in-vivo findings, BA significantly 
decreased LPS-induced bone loss [291]. Moreover,  
Toker et al (2016) also shown in their study that BA 
may reduce alveolar bone loss in a rat model with 
periodontitis and osteoporosis [292].

Effects on ischemia/reperfusion
A pathological state known as ischemia and 

reperfusion (I/R) is defined by an initial restriction of 
an organ’s blood supply, followed by a subsequent 
restoration of perfusion and simultaneous  
reoxygenation [293]. Organ ischemia can have serious 
repercussions such as cerebral infarction and MI, 
leading to irreparable tissue damage [294, 295]. Tissue 
reperfusion helps to prevent further ischemia; but, in 
some instances, it may worsen the injury via a process 
known as I/R injury, which may take place in many 
organs and result in incapacity, severe diseases and even  
death [293, 296, 297]. A protective agent against I/R 
injury is BA. BA has promising results according to 
Güler et al (2021) in the treatment of experimental I/R 
injury of the cholestatic liver because of its antioxidant  
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properties [298]. Also, Çolak et al (2022) explored  
the role of BA in ovarian tissue damage induced by I/R, 
demonstrated that BA has a protective effect on ovarian 
tissue against I/R damage in the rat model [299].

Effects on epilepsy
About 50 million individuals worldwide suffer 

from epilepsy, a chronic, recurring, and progressive 
neurological condition [297]. The presence of 
paroxysmal, self-limited convulsive or non-convulsive 
seizures characterizes epilepsies, which are persistent 
neurological diseases [300–302]. All forms of epilepsies 
include recurrent and spontaneous seizures, which 
are defined by synchronized high-frequency firings of 
brain neuronal populations [303, 304]. Being a complex 
condition with a wide variety of clinical characteristics, 
epilepsy cannot be sufficiently explained by a single 
pathogenic process. It is known that in vivo studies have 
been conducted on epilepsy, and in these studies, the 
effects of BA and BCCs have also been investigated [35].  
To ascertain the impact of BA on epileptiform activity, 
Karademir and Arslan (2019) administered four 
distinct dosages of BA half an hour after injecting 
penicillin. Proconvulsant action was demonstrated by 
BA treatment without altering the spike amplitude. 
The antiepileptic medication gabapentin decreased  
the frequency of spike activities and when combined,  
BA prevented gabapentin’s anticonvulsant effects [305].

The effects of boric acid and boron-containing 
compounds on cell viability
BA has been shown to significantly affect the 

viability and osteogenic differentiation of adipose-
derived mesenchymal stem cells, with no observed 
toxic effects on these cells [306]. A study by  
Lu et al (2020) investigated the effects of BA at seven  
different concentrations on cultured rat Sertoli  
cells [307]. The results showed that concentrations 
of 0.5 mmol/L and below increased cell viability and 
resulted in the lowest rates of necrosis and apoptosis. 
However, as the concentration increased, toxic effects 
on the cells were observed, leading to decreased cell 
viability and increased necrosis and apoptosis [307]. 
In a study where different concentrations of borax 
pentahydrate (BPH) were applied to human umbilical 
vein endothelial cells (HUVEC), BPH was reported 

to have a selective effect on HUVEC viability [308].  
Ozansoy et al (2020) investigated the effects of two BCCs, 
sodium borate decahydrate and BA, against Aβ toxicity. 
The results showed that both compounds enhanced the 
survival of SH-SY5Y cells in an in vitro Aβ model. These 
boron compounds increased the expression of SIRT1, 
a protein with a protective function against cellular  
stress [34]. Additionally, in a study by Turkez et al (2022), 
various boron compounds (colemanite, ulexite, BA, and 
borax) were tested and found not to cause any cytotoxic 
damage in human blood cells or rat primary cortical 
neurons [178].

Safety and toxicity
It is of great importance to understand the safety 

profiles of BCCs, which have a wide range of uses 
from industrial applications to agriculture, from 
pharmaceuticals to materials science. Studies on the 
effects on human health reveal that the toxicological 
properties of boron and its derivatives vary depending 
on the level and duration of exposure [90]. The 
mechanisms primarily responsible for the toxicity 
of the boron compounds involve interference in cell  
membrane permeability and enzyme systems. BA and 
its derivatives have been found to react in a cis-diols 
of biomolecules. A typical interaction might interfere 
with essential biomolecule function, for instance,  
ribose containing molecules NAD+ and RNA [309]. Most 
acute inorganic boron toxicities have relatively low 
to moderate. For the first one, LD50 oral was set for  
2660 mg/kg body weight for BA. It can also show 
GI irritation symptoms on acute contact-mostly 
characterized by vomiting and diarrhea [310]. In 
long-term exposure, the effects of boron compounds 
on the reproductive system come to the fore.  
The studies conducted in cases of occupational and 
environmental exposure showed that effects such as 
a decrease in the quality and number of sperms in the 
male reproductive system and ovulation disorders in 
females can be observed [311]. The studies performed 
regarding the metabolic effects of boron compounds 
revealed very important findings in postmenopausal 
women. Studies on the daily intake of boron through 
diet and its effects on health also reveal positive  
effects, primarily relating to bone metabolism. In a 
controlled study, Hunt et al (1994) showed that low 
intake of boron at 0.25 mg per day increased urinary 
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calcium excretion and impaired magnesium metabolism 
in subjects compared to high boron intake of 3.25 mg 
per day [312]. Results from experiments underscore 
the need for adequate boron intake for mineral  
metabolism [310–312]. Randomized controlled trials 
demonstrated that boron supplementation is likely 
to positively impact bone mineral density [258]. 
Mechanistic studies show that the involvement of 
boron relates to steroid hormone metabolism and 
vitamin D homeostasis [312]. In conclusion, toxic 
manifestations of boron and its compounds are related 
to the level and duration of exposure. Available scientific 
data on the industrial and agricultural use of boron  
compounds indicate that such applications have 
an acceptable safety profile, provided that proper 
precautions are taken, and the limits of exposure are not 
exceeded.

CONCLUSION
The prevalence of boron in natural goods and its 

overall safety as a mineral have garnered considerable 
interest from health science researchers. The  
findings of the extensive review indicate that BA 
and some BCCs exhibit significant effects, including 
neuroprotection, cardioprotection, hepatoprotection, 
gastroprotection, antidiabetic properties, and 
antimicrobial, antibacterial, antifungal, antiviral, 
antiprotozoal, antiparasitic, anti-obesity, antioxidant, anti- 
inflammatory, anti-atherosclerotic, anticancer, anti-apoptotic,  
ferroptosis-related, and immune-related effects. 

As a result, synthetic BCCs have been created in 
recent years, accompanied by a significant rise in both 
preclinical and clinical research. At now, 5 BCCs drugs 
(tavaborole, vaborbactam, bortezomib, crisaborole 
and ixazomib) have been approved by the FDA for 
diverse clinical applications. It is also understood that 
more than 10 boron-based compounds (alabostat,  
TOL-463, sodium borocaptate, voromycin and others) 
are being investigated in different clinical trial phases. 
In addition, it is seen that clinical studies are continuing  
for combinations of various drugs with BCCs for use in 
new indications.

In addition, it is observed that boron and boron-
containing compounds are widely used as supplements. 
It is known that boron and boron-containing  
compounds are used in various pharmaceutical forms; 
capsules, tablets, chewing gums, liquid and powder 
(or antifungal and antibacterial applications) forms,  
fortified foods and beverages, boron-enriched 
mineral waters and functional foods containing boron 
compounds.

The consensus is that most toxic research involving 
boron focus on BA. BA is readily absorbed by the 
gastrointestinal tract. Boron is primarily believed to 
be excreted via urine; however, it has been noted that 
it is also eliminated through the gastrointestinal tract 
following the application of hazardous quantities of 
boron transdermally. BA has demonstrated deadly 
effects in numerous instances following cutaneous 
and oral administration in preclinical trials. Preclinical 
study results indicated an absence of genotoxicity 
and carcinogenicity. Chronic investigations have 
demonstrated that BA is non-carcinogenic.

The chemical characteristics of boron augment its 
medicinal potential. Boron is extensively employed in 
research as a reversible covalent moiety in peptides 
for protease inhibition, owing to its reversible 
electrophilicity. Moreover, boronic acids and boron 
esters, which demonstrate stability and binding at 
physiological pH, work as bioisosteres for ionized 
functional groups like carboxylates, esters, and 
phosphates, thus enhancing pharmacokinetic qualities, 
biological activity, or structural attributes.

Current research indicates that boronic acids may 
enhance the delivery of drugs and macromolecules by 
incorporating into lipid bilayers for liposomal transport 
or by reversibly binding to proteins. These findings 
underscore boron’s potential for innovative therapeutic 
applications and the enhancement of its clinical 
value. BA and several BCCs demonstrate considerable  
potential for the development of novel therapeutic 
strategies for human diseases.
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