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The aim of the paper is to assess the change in the mitochondrial respirometric function under conditions of various patholo-
gies. Materials and methods. The study was performed on male Wistar rats. Experimental focal cerebral ischemia, traumatic
brain injury, coronary occlusive myocardial infarction and muscle dysfunction were used as pathological models. Focal
ischemia was reproduced by the method of irreversible thermocoagulation of the middle cerebral artery. Traumatic brain
injury was modeled by the method of free fall of the load. Experimental myocardial infarction was reproduced by ligating the
descending branch of the left coronary artery. Muscle dysfunction was modeled by the method of «forced swimming with a
20% burdeny. The respiratory function of mitochondria was assessed by the method of respirometry by the change in oxygen
consumption when introducing mitochondrial respiration into the medium: Oligomycin, Rotenone and FCCP. Additionally, we
evaluated the intensity of the glycolysis process and the activity of respiratory complexes I, II, IV and V. In order to compre-
hensively assess the respiratory function, an ELISA study was conducted to determine the concentration of ATP, mitochondrial
ATP synthetase, cytochrome C oxidase and NADP-Oxidase 4. Results. In the course of the study it was established that un-
der conditions of experimental cerebral ischemia, traumatic brain injury, myocardial infarction and muscle dysfunction, the
ATP-generating ability of mitochondria the maximum breathing and respiratory capacity deteriorated, herby the decrease in
overall respiratory function was accompanied by an increase in glycolysis, which was uncompensated, as well as dysfunction
of mitochondrial complexes I, I, IV and V, confirmed by an increase in NADPH oxidase 4 activity and a decrease in cyto-
chrome C oxidases and ATP synthetase. As a result, the observed changes in mitochondrial respiration function contributed to
a decrease in ATP concentration under conditions of cerebral ischemia - by 3.2 times (p <0.05), traumatic brain injury — by
2.6 times (p <0.05), myocardial infarction — by 1.8 times (p <0.05) and muscle dysfunction — by 4 times (p <0.05). Conclu-
sion. Basing on the data obtained, we can assume that in conditions of cerebral ischemia, traumatic brain injury, myocardial
infarction and muscle dysfunction, there is deterioration of the mitochondrial respirometric function with inhibition of ATP
synthesis and increased glycolysis.
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Lens uccnedosanusn — oyenumsv usmMeHeHue peCnUPOMempudeckoll GYHKYUY MUMOXOHOPULL 8 YCIL0BUAX PANUUHBIX NAMONO0-
euii. Mamepuanvt u memooul. Hccrneoosanue 8einoineHo Ha kpvicax camyax aunuu Wistar. B kauecmee mooenvnvix namo-
Jo2utl 8 pabome UCHONL30BANU IKCNEPUMEHMATLHYIO (YOKATLHYIO UUEMUI0 20I08HO20 MO32d, YePenHO-MO3208)10 Mpasmy,
KOPOHAPOOKKAIO3UOHHDLI UHGAPKM MUOKAPOA U MbluedHylo ouc@yrkyuio. PoKanbHyo umemuo 60CHpPOU3B00ULU Memooom
Heobpamumoll mepmoKoazyisyuu cpeoHell Mo32060u apmepuu. Yepentno-mo3208y10 mpasmy mMooenuposau Menooom c80600-
HO020 nadenus epy3a. IKCnepUMEHmManbHblll UHDAPKM MUOKAPOA BOCHPOU3BOOUNU TULUPOBAHUEM HUCXOOWell 6emBU 1e6oll
Koponapnoi apmepuu. Muluieunyio oucgynkyuio Mooeauposan Memooom «npunyoumensro2o niasanus c 20% omseowjenu-
emy. [vixamenviyio yyHKYuio MumoxoHopuil OyeHusatu MemoooM pecRupomMempuu no U3MeHeHuIo NompedieHUs KUCI0pood
npu 8HeceHuU 8 cpedy pazoobuumerneli MUMOXOHOPUATbHO20 ObiXanus: onueomuyut, pomenon u FCCP. [Jononnumenvho oye-
HUBANU UHMEHCUBHOCIb NPOYECCa 2IUKOTU3A U AKMUBHOCMYb ObixamenbHblx komniexcos I, I, IV u V. C yenvio komnaekcHotl
OYeHKU pechupomempuyeckoll pyrkyuu nposoounu UPA-uccredosanue ¢ onpedeneruem konyenmpayuu ATD, mumoxonopu-
anvuou ATD-cunmemasvl, yumoxpom-c-oxcuoazvl u HAJD-oxcuoasvr 4. Pesynomamsl. B x00e npogedenus ucciedosanus
VCMAHOBNIEeHO, YMO 8 YCI0BUAX IKCNEPUMEHIMANLHOU UeMUU 20I08HO20 MO32d, YePenHO-M0320801 MPAMbl, UHGAPKMa Mu-
oxapoa u mvlueuHoll ouchynkyuu ommeuero yxyouienue ATD-eenepupyioweri cnocobHoCmu MUmoxoHopul, MaKCUMAantbHO20
VPOBHS ObIXAHUS U PECRUPAMOPHOL eMKOCHU, NPU SMOM CHUJICEHUe 0bujell pecnupomMempuieckol QyHKyuu conposoicoa-
J10Cb ycuneHuem npoyeccos 2AUKoIU3d, KOmopoe HOCUNO HeKOMNEeHCUPOBAHMbLIL Xapakmep, a makice OUC@YHKYuel Mumo-
XoHOpuanvhvix xomnaexcos I, I, IV u V, noomeepowcoaemoti yeenuuenuem axmusnocmu HAJ[D-oxcudasvl 4 u cuudicenuem
AKMUBHOCU YUMOXPOM-C-okcuoasvl u ATD-cunmemaswi. B umoee nabnioodaemvie usmenerus pecnupomempuiecko QyHKyuu
MUMOXOHOPULL CROCOOCMBO8ANU YMeHbLUeHUI0 Konyenmpayuu ATD 6 ycrosusx yepebpanvhou uwemuu — 6 3,2 paza (p<0,05),
uepento-mo32060t mpasmul — 8 2,6 paza (p<0,05), ungpapxma muoxapoa — 6 1,8 paza (p<0,05) u meiweuroi oucghyrkyuu —
6 4 paza (p<0,05). 3aknrouenue. OcHosvl8AACH HA NOTYHUEHHBIX OAHHBIX MOJICHO NPEONONOANCUTND, YMO 8 YCI0BUAX UUEMUU
20JI08HO20 MO32d, YEPENHO-MO32080U MPAMbI, UHDAPKIMA MUOKAPOA U MBIUEYHOU OUCQYHKYUU HAOII0O0aemcs: yXyouleHue
pecnupomempuyeckoli hyHKYuu Mumoxonopuii ¢ yenemenuem cunmesa AT® u ycunenuem npoyeccos 2nukoiu3sd.

Knrouesvle cnoga: uwemus 201061020 M0O32d, UHDAPKM MUOKAPOA, YePEenHO-MO3208a5 MPABMA, MbIUEUHAS. OUCHYHKYUS,
pecnupomempus MUMOXoHOpUl

INTRODUCTION

Mitochondria are cellular organelles, the main
sources of energy in the cell, which also play a signif-
icant role in regulating the processes of caspase-depen-
dent and caspase-independent pathways of apoptosis and
redox signaling of the cell [1]. In accordance with this,
three leading mitochondrial functions are distinguished:
respirometric, i.e. ensuring the synthesis of macroergs in
the process of redox reactions in the electron-transport
mitochondrial respiratory chain [2]; apoptosis-regulat-
ing, i.e. regulation of the initiation and progression of
the apototic signal [3] and antioxidant, i.e. inactivation
of free radicals [4]. At the same time, the main func-
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tion of mitochondria is respirometric, which provides
the relationship between the redox state of the cell and
the activation of proapoptotic molecules [5]. Currently,
it has been established that the number of “mitochon-
drial diseases”, the pathogenesis of which is associated
with impaired functional activity of mitochondria, com-
prises ischemic stroke, Alzheimer’s disease, traumatic
brain injury, ischemic heart disease and myocardial in-
farction, muscle fatigue [6]. In the scientific literature
it is reported that in the pathogenesis of these diseases,
one of the central roles is assigned to the energy defi-
cit that occurs when there is mitochondrial dysfunction
[7]. At the same time, the reduction in the formation of
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macroergic compounds is inseparably linked with the
disruption of electron transport in the respiratory chain
of mitochondria and the dissociation of the reactions of
subcomplexes I, I, IV and V, which leads to the activa-
tion of glycolysis and a significant decrease in ATP syn-
thesis [8]. In addition, dysfunction of complexes I and II
contributes to the redistribution of oxygen flow towards
the formation of prooxidants, in particular the superox-
ide radical [9] and a decrease in the formation of ATP
leads to the activation of the caspase-dependent pathway
of apoptosis [10]. At the same time, the intensification
of anaerobic oxidation processes leads to the accumula-
tion of non-oxidized products of metabolism. That shifts
the intracellular pH value in the acidic direction. Under
current conditions, activation of pro-apoptotic signaling
molecules (proteins of the Bid / Bax family) is noted,
triggering a caspase-independent pathway of apopto-
sis, which enhances cellular destruction [11]. Thus, the
assessment of the change in mitochondrial respiration
function under conditions of various pathologies may be
the basis for the development of mitochondrial disease
treatment strategies, which can eliminate energy deficit
and associated apoptosis and oxidative modification of
cellular structures.

MATERIALS AND METHODS

Biological model

The study was performed on 50 male Wistar rats
weighing 220-240 grams, obtained from the nursery of
laboratory animals “Rappolovo”. The contents and all
animal manipulations complied with the requirements
of the European Convention for the Protection of Verte-
brate Animals used for experiments and other scientific
purposes (Strasbourg, 1986). The rats were housed in
macrolon cages, where granulated wood faraction was
used as litter at the relative humidity of 60 + 5% and the
air temperature of 22 + 20°C. The feed and water were
received by the animals in the free access. During the
study, the following experimental groups were formed:
intact animals (n = 10), the rats with reproduced cerebral
ischemia (n = 10), TBI (n = 10), myocardial infarction
(n=10) and muscle dysfunction (n = 10).

Model of focal cerebral ischemia

Focal cerebral ischemia was modeled by irreversible
right-sided thermocoagulation of the middle cerebral ar-
tery under chloral hydrate anesthesia (350 mg / kg). The
area below and to the right of the eye was depilated, an
incision was made. The soft tissues were moved apart,
exposing the process of the zygomatic bone, which was
removed. Then a trephine opening was burred and the
middle cerebral artery was burned through by a thermo-
coagulator under its intersection with the olfactory tract.
Later on , the topography of soft tissues was restored as
far as possible. The suture was treated with a 5% iodine
solution [12]. The biomaterial was sampled on the 4th
day after the reproduction of focal ischemia.
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Model of experimental traumatic brain injury

Traumatic brain injury was modeled by the method
of a free fall of load of 150 g from a height of 50 cm
to the parietal region of the brain of rats. The animals
were placed in a special installation, which is a hollow
cylinder with backing and retainers, in which the head of
rats was fixed. After hat the load was released [13]. The
biomaterial was sampled on the 4th day after the repro-
duction of the TBI.

Muscle Dysfunction Model

Muscle dysfunction was reproduced by the method
of “forced swimming with 20% weight” after determin-
ing the initial value of the swimming time, the animals
were subjected to training tests for 28 days (the swim-
ming time was 20% of the initial index). On days 7, 14,
21, and 28, the rats were subjected to the exhausting
test — swimming until they completely abandoned the
struggle for life, after which the animals were taken out
of from the water. The biomaterial was taken on day 28
[14].

Model of acute myocardial infarction

In animals under conditions of chloral hydrate anes-
thesia (350 mg / kg) and artificial ventilation of the lungs,
the skin on the previously depilated area was cut in the
sternum area and the muscles were dissected. Next, the
IV rib was isolated, and the chest was opened. The myo-
cardium was separated from the epicardium and the heart
was led into the wound. Subsequently, the ligation of the
descending branch of the left coronary artery with silk
thread was carried out. The wound was sutured in layers.
The biomaterial was taken 24 hours after the operation
[15].

Biomaterial sampling and sample preparation

Brain, myocardium and muscle tissue (m.quadriceps
femoris) of the rats were used as biomaterial. The ani-
mals were decapitated under chloral hydrate anesthesia
(350 mg/kg), their organs were harvested. After that the
biomaterial was homogenized in a mechanical homoge-
nizer in a selection medium (1 mmol EDTA, 215 mmol
mannitol, 75 mmol sucrose, a 0.1% BSA solution, 20
mmol HEPES, with a pH of 7.2). The cell population was
obtained by differential centrifugation, for which the ob-
tained biogenic homogenate was centrifuged in the mode
of 1.400 g — 3 min. at 40°C. After that the supernatant
was transferred into 2 ml tubes. Next, the resulting su-
pernatant was centrifuged at 13000 g — 10 min and the
supernatant (the culture contains native mitochondria)
was removed for analysis [16].

Respirometric analysis

The analysis of the state of the mitochondrial respi-
ratory function was carried out by the method of respi-
rometry using the AKPM1-01L laboratory respirometer
system (Alfa Bassens, Russia). The mitochondrial respi-
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ratory function was assessed by the change in the oxygen
consumption in the medium against the introduction of
mitochondrial respiratory uncouplers. The latest in the
experiment were: Oligomycin 1 pg/ml; 4 — (trifluorome-
thoxy) phenyl) hydrazono) malononitrile (FCCP-1 uM);
rotenone — 1 uM; sodium azide — 20 mmol. The oxidation
substrates were: glucose — 15 mmol; pyruvic acid — 10
mmol; malate — 1 mmol; succinate — 10 mmol; ascorbate
— 2 mmol; ADP — 1 mmol; N, N, N ¢, N’-tetrameth-
yl-1,4-phenylenediamine (TMPD- 0.5 mmol). The over-
all assessment of mitochondrial function was determined
by the level of oxygen consumption in the medium after
sequential addition of oligomycin, FCCP and rotenone to
the medium, and the ATP-generating ability was deter-
mined (by the difference in oxygen consumption after the
addition of FCCP and oligomycin); the maximum lev-
el of respiration (according to the difference in oxygen
consumption after the addition of FCCP and rotenone)
and the respiratory capacity (according to the difference
in oxygen consumption after the addition of FCCP and
the basal level of oxygen consumption). The activity of
glycolysis processes was evaluated when glucose was
used as an oxidation substrate during the registration of
oxygen consumption under the conditions of sequential
addition of glucose, oligomycin and sodium azide to the
medium. The intensity of glycolysis was determined ac-
cording to the difference in oxygen consumption after
adding glucose and the basal level of oxygen consump-
tion; the intensity of glycolytic capacity was determined
according to the difference in oxygen consumption after
adding oligomycin and glucose; and the intensity of gly-
colytic reserve was determined according to the differ-
ence in oxygen consumption after adding glucose and
sodium azide. Additionally, the activity of complexes I,
II, IV, and V of the mitochondrial respiratory chain was
evaluated. The activity of complex I was determined by
the difference in oxygen consumption after adding the
malate / pyruvate and rotenone mixture to the medium.
The activity of complex II was evaluated by the differ-
ence in oxygen consumption after adding succinate and
oligomycin to the medium. The activity of complex IV
was determined by the difference in oxygen consumption
after adding the mixture of rotenone / TMPD / ascorbate
and sodium azide to the medium. The activity of com-
plex V was evaluated by the difference in oxygen con-
sumption after adding rotenone and ADP to the medium.
During the analysis, the biosample volume was 275 pl,
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and 25 pl of injected analyzers. The oxygen consumption
was determined in ppm [19].

ELISA — study

In this study, the concentration of ATP, mitochon-
drial ATP synthetase-(mATP), cytochrome C oxidase
(CoX), and NADP oxidase 4 (NOX4) were determined
by ELISA in the supernatants of the myocardial, brain
and muscle tissues. We used species-specific sets of re-
agents produced by Cloud clone corp. (USA). The sample
preparation and the course of the analysis corresponded
to the instructions attached to the enlistment.

Statistical analysis methods

Statistical analisys of the obtained results was per-
formed using the stat-analysis package STATISTICA 6.0.
The data were presented as M + SEM. The comparison of
medium groups was performed using the ANOVA meth-
od with the post-test of Newman-Keuls at p <0.05.

RESULTS

During the overall assessment of the mitochondrial
respiratory function under conditions of various patholo-
gies, it was found out that in rats with TBI and cerebral
ischemia (Fig. 1), compared with the intact animals, there
was a decrease in ATP-generating ability of mitochondria
by 1.75 times (p <0, 05) and by 4.6 times (p <0.05), re-
spectively. A decrease in the maximum level of respira-
tion and respiratory capacity relative to intact rats was also
noted in animals with cerebral ischemia by 2.85 times (p
<0.05) and by 2.13 times (p <0.05), respectively. Against
the background of the experimental traumatic brain injury,
the animals compared to intact rats, showed a decrease in
the maximum level of respiration by 1.77 times (p <0.05)
and respiratory capacity by 3.92 times (p <0.05).

Under conditions of myocardial infarction (Fig. 2)
in rats, there was a decrease in ATP-generating activity,
the maximum level of respiration and respiratory capac-
ity relative to the group of intact animals by 2.27 times
(p <0.05); by 2.98 times (p <0.05) and by 2.78 times (p
<0.05), respectively.

In rats, against the background of muscle dysfunc-
tion (Fig. 3) compared with intact animals, a decrease in
the maximum level of respiration, ATP-generating activ-
ity and respiratory capacity was observed by 3.28 times
(p <0.05); by 4.62 times (p <0.05) and by 2.13 times (p
<0.05), respectively.
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B Cerebralischemia & TBI E Intact animals

Figure 1. General assessment of mitochondrial respiration function under conditions of cerebral ischemia
and traumatic brain injury

Note: * — statistically significant relative to the group of intact animals (Newman-Keuls test, p <0.05)
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Figure 2. General assessment of the mitochondrial respiration function in experimental myocardial infarction

Note: * — statistically significant relative to the group of intact animals (Newman-Keuls test, p <0.05)
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Figure 3. General assessment of mitochondrial respiration function under conditions of muscle dysfunction

Note: * — statistically significant relative to the group of intact animals (Newman- Keuls test, p <0.05)

When assessing glycolytic processes under con-
ditions of various pathologies it was found out that in
animals with TBI and cerebral ischemia (Fig. 4) there
was an increase in glycolysis intensity compared to the
group of intact animals by 18.04 times (p <0.05) and by
23.89 times (p <0.05), respectively. At the same time, in
rats with experimentally reproduced cerebral ischemia,

a decrease in glycolytic capacity relative to the group of
intact animals was observed by 4 times (p<0.05), and the
level of glycolytic reserve got a negative value (Fig. 2).
Against the background of TBI in rats, in comparison
with the intact group of animals, the glycolytic capacity
and glycolytic reserve decreased by 22.6 times (p <0.05)
and by 6 times (p <0.05), respectively.
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Figure 4. Assessment of changes of the glycolysis process in experimental cerebral ischemia
and traumatic brain injury conditions

Note: * — statistically significant relative to the group of intact animals (Newman- Keuls test, p <0.05)
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Under conditions of myocardial infarction in exper-
imental animals (Fig. 5), the intensity of glycolysis pro-
cesses exceeded that of the intact group of animals by 17.3

14

(p <0.05) times, against the background of a decrease in
glycolytic capacity and glycolytic reserve by 9.25 times (p
< 0.05) and by 37.28 times (p <0.05), respectively.

[EEN
N

[EEN
o

oxygen consuption, ppm

*

E Myocardial infarction

0 - = 4 : i

Glycolisis intencity Glycolitic capacity

.

Glycoliticreserve

i Intact animals

Figure 5. Assessment of changes in the glycolysis process in myocardial infarction conditions

Note: * — statistically significant relative to the group of intact animals (Newman- Keuls test, p <0.05)
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N

1 * —

0 = = T— T

1 Glycolisis intencity Glycolitic capacity
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B Muscle dysfunction
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Figure 6. Assessment of changes in the glycolysis process in muscle dysfunction conditions

Note: * — statistically significant relative to the group of intact animals (Newman- Keuls test, p <0.05)
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In rats, against the background of muscle dysfunc-
tion (Fig. 6), in comparison with intact animals, an in-
crease in glycolysis intensity was observed, as well as a
decrease in glycolytic capacity by 3.55 times (p <0.05)
and by 2.35 times (p <0.05) , while the value of the gly-
colytic reserve took a negative value.

Evaluating the change in the activity of the mito-
chondrial respiratory chain complexes, it was found out
that in rats under conditions of cerebral ischemia (Fig.
7) a decrease in the activity of mitochondrial complex-

6

es I, II, IV and V was observed in comparison with the
intact group of rats by 4.8 (p <0.05 a) times; by 4.6
times (p <0.05); by 13.4 times (p <0.05) and by 9.33
times (p <0.05, respectively. Against the background
of experimentally modeled TBI (Fig. 7), in animals
relative to the intact group of rats, a decrease in the
activity of complex I by 2.17 times (p <0.05), complex
II — by 4.8 times (p <0.05), complex IV — by 11.1 times
(p <0.05) and complex V — 8.1 by times ( p <0.05) was
observed.

oxygen consuption, ppm
w

Complex|

Complexll

H Cerebralischemia

K TBI

Complex IV Complex V

H Intact animals

Figure 7. Evaluation of changes in the activity of the mitochondrial respiratory chain complexes under
conditions of experimental cerebral ischemia and traumatic brain injury

Note: * — statistically significant relative to the group of intact animals (Newman- Keuls test, p <0.05)

Under conditions of myocardial infarction (Fig. 8),
the animals showed a decrease in the activity of mi-
tochondrial complexes I, II, IV and V in comparison

with intact animals by 3.3 times (p <0.05); by 3.4 times
(p <0.05); by 11.1 times (p <0.05) and by 7.5 times
(p <0.05), respectively.
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Figure 8. Evaluation of changes in the activity of the mitochondrial respiratory chain complexes under
conditions of experimental myocardial infarction

Note: * — statistically significant relative to the group of intact animals (Newman- Keuls test, p <0.05)
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Figure 9. Evaluation of changes in the activity of the mitochondrial respiratory chain complexes under
conditions of experimental muscle dysfunction

Note: * — statistically significant relative to the group of intact animals (Newman- Keuls test, p <0.05)

In animals with muscle dysfunction (Fig. 9), the ac-
tivity of the respiratory complexes I, II, IV and V was 4
times lower in comparison with the intact rats (p <0.05);
3.6 times (p <0.05); 4.3 times (p <0.05) and 2.1 times (p
<0.05), respectively.

Assessing the change in the concentration of en-
zyme complexes characterizing mitochondrial func-
tion (Table 1), it was found out that NOX4 activity
increases in groups of animals with model patholo-

gies: cerebral ischemia, TBI, myocardial infarction
and muscle dysfunction compared to the group of the
intact rats by 15.8 times (p <0.05); by 10.2 times (p
<0.05); by 9.2 times (p <0.05) and by 6.1 times (p
<0.05), respectively. In animals with experimentally
reproduced cerebral ischemia, a decrease in CoX and
mATP activity was also observed relative to the group
of the intact rats by 2.9 times (p <0.05) and by 3.4
times (p <0.05), respectively.

Table 1. Change in the concentration of mitochondrial function markers under conditions
of various pathologies (ELISA study)

Group NOX4, ng/ml CoX, ng/ml mATP, ng/ml ATP ng/ml
liti6f Ernfioalis 1.240.014 46.97+0.695 98.6242.631 1172.34+10.291
(Brain)

TBI 12.23+0.237* 26.4+0.896* 36.3£1.917* 453.148.614%
(il kg 18.14£0.331* 16.3540.417* 20.1+1.118% 364.6147.924*
Intact animals 1,6£0.028 43.94+0.792 101.242.939 1233.149.144
(Myocardium)

Myocardial infarction 14.75+0.542* 28.6+0.991* 43.2+1.249* 662.4+5.271*
Intact animals 2.65+0.634 48.9140.541 109.24+1.712 1536.248.176
(Muscle tissue)

Muscle dysfunction 16.2£0.524+0.743* 27.5£0.335* 18.6:2.364* 379.65+6.928*

Note: * — statistically significant relative to the group of intact animals (Newman-Keuls test, p <0.05)

At the same time, in animals with TBI, the content
of Cox and mATP, in comparison with intact rats de-
creased by 1.8 times (p <0.05) and 2.7 times (p <0.05), ,
respectively. Under the conditions of myocardial infarc-

28

tion (Table 1), the rats showed a decrease in CoX and
mATP activity relative to the intact group of animals by
1.5 times (p <0.05) and by 2.3 times (p <0.05), respec-
tively. Besides, against the background of experimental
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muscle dysfunction (Table 1), the content of these en-
zymes also decreased (compared to the intact group of
rats: CoX — by 1.8 times (p <0.05); mATP — by 5.9 times
(p <0, 05)). It is quite important that the observed nega-
tive changes in mitochondrial function under conditions
of cerebral ischemia, TBI, myocardial infarction and
muscle dysfunction were accompanied by a decrease in
ATP concentration relative to intact rats by 3.2 times (p
<0.05); by 2.6 times (p <0.05); by 1.8 times (p <0.05) and
by 4 times (p <0.05), respectively.

DISCUSSION

Currently, it has been established that a significant
number of pathologies are associated with the develop-
ment of mitochondrial dysfunction [18]. Mitochondrial
dysfunction is an integral part of the etiopathogeneses
of various diseases, however, mitochondrial dysfunction
plays the most important role in the development and pro-
gression of pathologies of the brain, heart and skeletal mus-
cles — most energy-intensive organs, functioning of which
requires a constant sum of macroergs [19-21]. The present
study focused on the evaluationt of mitochondrial respi-
ration function under conditions of ischemic genesis pa-
thologies, in which there is a significant energy deficit that
directly characterizes the activity of mitochondria — focal
ischemia, brain injury, myocardial infarction and muscle
dysfunction [22]. The study has shown that under condi-
tions of model pathologies, there is a significant deterio-
ration in the ATP-synthetic ability of mitochondria, which
reflects a decrease in the maximum level of respiration,
respiratory capacity and ATP-generating ability of mito-
chondria in comparison with intact animals [23]. At the
same time, it is important that the decrease in the ATP-syn-
thesizing function of mitochondria was accompanied by
the intensification of glycolysis processes which was not
compensated, and had a maximum permissible nature. It
can be judged by a significant decrease in glycolytic ca-
pacity, glycolytic reserve and ATP concentration in the ani-
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