Scientific and Practical Journal PHARMACY & PHARMACOLOGY

(cc) BY

ANALYTICAL FEATURES OF SYNTHETIC MDMB(N)-073F CANNABIMIMETICS AND ITS MARKERS IN BIOLOGICAL MATERIAL

S.S. Kataev¹, O.N. Dvorskaya², M.A. Gofenberg^{4,5}, A.V. Labutin⁶, A.B. Melentyev⁷

- ¹ Perm Regional Bureau of Forensic-Medical Expertise, 61, Startsev Str, Perm, Russia, 614077
- ² Perm State Pharmaceutical Academy, 2, Polevaya Str., Perm, Russia, 614990
- ³ Sverdlovsk Regional Narcological Hospital, I44 A, Khalturin Str., Yekaterinburg, Russia, 620030
- ⁴ Yekaterinburg State Publicly Funded Health Facility "Regional Clinical Psychiatric Hospital",
- 8km, Sibirsky Trakt, Yekaterinburg, Russia, 620034
- ⁵ Ural State Medical University, 3, Repin Str., Yekaterinburg, Russia, 620028
- ⁶ Tomsk Regional Drug Abuse Clinic, 4, Lebedev Str., Tomsk, Russia, 634061
- ⁷ Chelyabinsk Regional Bureau of Forensic-Medical Expertise, 4b, Varna Str., Chelyabinsk, Russia, 454076

E-mail: dvoksnik@gmail.com

Received 29 June 2019	Review (1) 7 August 2019	Review (2) 15 August 2019	Accepted: 20 August 2019

The aim of the research is to study both analytical features of synthetic MDMB(N)-073F cannabimimetics of indazole carboxamides group by gas chromatography methods combined with tandem mass spectrometry (GC-MS) and high performance liquid chromatography with high-resolution mass spectrometry (HPLC-HRMS) as well as characteristics of the major MDM-B(N)-073F metabolite, its glucuronide and derivatives, using gas chromatography with mass-spectrometric (GC-MS) detection and high-performance liquid chromatography (HPLC) with MS/MS mass spectrometry (HPLC-MS/MS) in urine samples to be applied in expert practice, chemical-toxicological and forensic and chemical analyses.

Materials and methods. To carry out the study, the following materials were used: plant-based objects with narcotic drugs withdrawn from illegal trafficking and applied to them;. urine samples to be studied under chemical-toxicological and forensic and chemical analyses. For solid-phase epitaxy, SampliQ EVIDEX TFE cartridges – 200 mg – 3 ml (Agilent, USA) were used for sample preparation; β -glucuronidase, Type HP-2, From Helix Pomatia, 100000 UA/ml (Sigma-ALDRICH CHEMI, Germany) was used for enzymatic hydrolysis. GC-MS/MS analysis was made using Agilent 7890 gas chromatograph with a tandem quadrupolar mass-spectrometer Agilent 7000 (Agilent, CШA); GC-MS analysis was carrid out using gas chromatograph Agilent 7820 with mass-selective detector Agilent 5975 (Agilent, USA); HPLC-HRMS research was made on liquid chromatograph Agilent 1260 with tandem hybrid high-resolution quadrupole-time-of-flight detector Agilent 6540 (Agilent, CШA); liquid chromatograph Agilent 1260 with tandem mass-spectrometer were used for making HPLC-MS/MS research.

Results. The structure of MDMB(N)-073F compound has been confirmed and an exact mass of the protonated molecule corresponding to the chemical formula $C_{19}H_{27}FN_3O_3$ fixed by GC-MS/MS and HPLC-HRMS methods. Spectral characteristics of MDMB(N)-073F have been given. One of the branches in MDMB(N)-073F biotransformation in the human body found out by GC-MS and HPLC-MS/MS methods, is the ester decomposition with further conjugation of the resulting acid. The product interacting with glucuronic acid, is found to be the conjugate of major MDMB(N)-073F metabolite of the lst phase in biotransformation. Metabolites appearing due to the ester decomposition and its conjugate with glucuronic acid, are recommended to be used as markers for synthetic MDMB(N)-073F cannabimimetics in the analysis by chromatographic methods; they can be used for regular screening of biological samples.

Conclusion. The research results presented here, are the following: the analytical features characteristic for synthetic MDM-B(N)-073F cannabimimetics found out by gas chromatography methods combined with tandem mass spectrometry (GC-MS/MS) and liquid chromatography of hybrid high-resolution quadrupole-time-of-flight mass spectrometry (HPLC-HRMS), as well as characteristics of major MDMB(N)-073F metabolite, its glucuronide and derivatives with the use of gas chromatography with mass-spectrometric detection (GC-MS) and liquid chromatography combined with tandem mass spectrometry (HPLC-MS/MS) in urine samples to be applied in expert practice, chemical-toxicological, forensic and chemical analyses.

Keywords: MDMB(N)-073F, cannabimimetics, gas chromatography – mass spectrometry (GC-MS), high performance liquid chromatography (HPLC), high-resolution mass spectrometry (HRMS), hybrid high-resolution quadrupole-time-of-flight mass spectrometry

Abbreviations: MRM – multiple reaction monitoring, GC – gas chromatography, MS mass spectrometry, HPLC – high performance liquid chromatography, HRMS – high-resolution mass spectrometry, a.u. – antitoxic unit.

© С.С. Катаев, О.Н. Дворская, М.А. Гофенберг, А.В. Лабутин, А.Б. Мелентьев, 2019

For citation: S.S. Kataev, O.N. Dvorskaya, M.A. Gofenberg, A.V. Labutin, A.B. Melentyev. Analytical features of synthetic MDMB(N)-073F cannabimimetics and its markers in biological material. *Pharmacy & Pharmacology*. 2019;7(4): 184-197. DOI: 10.19163/2307-9266-2019-7-4-184-197

Для цитирования: С.С. Катаев, О.Н. Дворская, М.А. Гофенберг, А.В. Лабутин, А.Б. Мелентьев. Аналитические характеристики синтетического каннабимиметика MDMB(N)-073F и его маркеров в биологическом материале. *Фармация и фармакология.* 2019;7(4): 184-197. DOI: 10.19163/2307-9266-2019-7-4-184-197

АНАЛИТИЧЕСКИЕ ХАРАКТЕРИСТИКИ СИНТЕТИЧЕСКОГО КАННАБИМИМЕТИКА MDMB(N)-073F И ЕГО МАРКЕРОВ В БИОЛОГИЧЕСКОМ МАТЕРИАЛЕ

С.С. Катаев¹, О.Н. Дворская², М.А. Гофенберг^{4,5}, А.В. Лабутин⁶, А.Б. Мелентьев⁷

¹Государственное казенное учреждение здравоохранения особого типа Пермского края

«Пермское краевое бюро судебно-медицинской экспертизы». 614077, Россия, г. Пермь, ул. Старцева, 61 ² Федеральное государственное бюджетное образовательное учреждение высшего образования «Пермская государственная фармацевтическая академия» Министерства здравоохранения

Российской Федерации. 614990, Россия, г. Пермь, ул. Полевая, 2

³ Государственное автономное учреждение здравоохранения Свердловской области

- «Областная наркологическая больница». 620030, Россия, г. Екатеринбург, ул. Халтурина, 44А
- ⁴ Государственное бюджетное учреждение здравоохранения Свердловской области «Свердловская областная клиническая психиатрическая больница».

620034, Россия, г. Екатеринбург, Сибирский тракт, 8 км

⁵ Федера́льное го́сударственно́е бюджетное образовательное учреждение высшего образования «Уральский государственный медицинский университет» Министерства здравоохранения Российской Федерации. 620028, Россия, г. Екатеринбург, ул. Репина, 3

- ⁶Областное государственное бюджетное учреждение здравоохранения «Томский областной наркодиспансер». 634061, Россия, г. Томск, ул. Лебедева, 4
- ⁷ Государственное бюджетное учреждение здравоохранения «Челябинское областное бюро

судебно-медицинской экспертизы». 454080, Россия, Челябинская обл., г. Челябинск, ул. Варненская, 4Б

	E-mail: dvoksnik@gmail.com
--	----------------------------

Получено 29.06.2019	Рецензия (1) 7.08.2019	Рецензия (2) 15.08.2019	Принята к печати 20.08.2019

Целью исследования является изучение аналитических характеристик синтетического каннабимиметика группы индазолкарбоксамидов MDMB(N)-073F методами газовой хроматографии с тандемной масс-спектрометрией (ГХ-МС/МС) и жидкостной хроматографии с гибридной квадруполь-времяпролетной масс-спектрометрией высокого разрешения (ВЭЖХ-МСВР), а также характеристик главного метаболита MDMB(N)-073F, его глюкуронида и дериватов с использованием газовой хроматографии с масс-спектрометрическим детектированием (ГХ-МС) и жидкостной хроматографии с тандемной масс-спектрометрией (ВЭЖХ-МС/ МС) в моче для целей экспертной практики, химико-токсикологического и судебно-химического анализа.

Материалы и методы. Объекты растительного происхождения с нанесенными на них наркотическими средствами, изъятые в нелегальном обороте. Образцы мочи, поступившие на химико-токсикологическое и судебно-химическое исследование. Для пробоподготовки использовались патроны для TΦЭ SampliQ EVIDEX – 200 мг-3 мл (Agilent, CША), для ферментативного гидролиза использовалась β-глюкуронидаза, Type HP-2, From Helix Pomatia, 100000 EД/мл (Sigma-ALDRICH CHEMI, Германия). ГХ-МС/МС анализ проводили на газовом хроматографе Agilent 7890 с тандемным квадрупольным масс-спектрометром Agilent 7000 (Agilent, США); ГХ-МС анализ выполнен на газовом хроматографе Agilent 7820 с масс-селективным детектором Agilent 5975 (Agilent, США); ВЭЖХ-МСВР исследование проводили на жидкостном хроматографе Agilent 1260 с тандемным гибридным квадруполь – времяпролетным детектором высокого разрешения Agilent 6540 (Agilent, США); ВЭЖХ-МС/МС исследование выполнено на жидкостном хроматографе Agilent 1260 с тандемным масс-спектрометром Agilent 6540 (Agilent, США); Результаты. В результате исследования, проведенного методами ГХ-МС/МС и ВЭЖХ-МСВР, подтверждена структура соединения

Результаты. В результате исследования, проведенного методами ГХ-МС/МС и ВЭЖХ-МСВР, подтверждена структура соединения MDMB(N)-073F, определена точная масса протонированной молекулы, соответствующая брутто-формуле С₁₉H₂₇FN₃O₃. Приведены спектральные характеристики MDMB(N)-073F. Методами ГХ-МС и ВЭЖХ-МС/МС установлено, что одним из направлений биотрансформации MDMB(N)-073F в организме человека является гидролиз сложноэфирной связи с последующей конъюгацией образующейся кислоты. Установлено, что конъюгатом главного метаболита MDMB(N)-073F фазы I биотрансформации является продукт взаимодействия с глюкуроновой кислотой. Метаболиты, образующиеся в результате гидролиза сложноэфирной связи, и его конъюгат с глюкуроновой кислотой рекомендованы в качестве маркеров употребления синтетического каннабимиметика MDMB(N)-073F при анализе хроматографическими методами они могут быть использованы при систематическом аналитическом скрининге биологических образцов.

Заключение. Приведены аналитические характеристики синтетического каннабимиметика MDMB(N)-073F методами газовой хроматографии с тандемной масс-спектрометрией (ГХ-МС/МС) и жидкостной хроматографии гибридной квадруполь-времяпролетной масс-спектрометрией высокого разрешения (ВЭЖХ-МСВР), а также характеристики главного метаболита MDMB(N)-073F, его глюкуронида и дериватов с использованием газовой хроматографии с масс-спектрометрическим детектированием (ГХ-МС) и жидкостной хроматографии с тандемной масс-спектрометрией (ВЭЖХ-МС/МС) в моче для целей экспертной практики, химико-токсикологического и судебно-химического анализа.

Ключевые слова: MDMB(N)-073F, каннабимиметики, метаболизм, газовая хроматография – масс-спектрометрия, высокоэффективная жидкостная хроматография, тандемная масс-спектрометрия, гибридная квадруполь-времяпролетная масс-спектрометрия высокого разрешения

Список сокращений: ГХ-МС/МС – газовая хроматография с тандемной масс-спектрометрией, ВЭЖХ-МСВР – жидкостная хроматография с гибридной квадруполь-времяпролетной масс-спектрометрией высокого разрешения, ГХ-МС – газовая хроматография с масс-спектрометрическим детектированием

INTRODUCTION

The analysis of toxicants' properties and processes of metabolism in the human body, methods of their extraction and identification is the main part in both forensic and toxicological chemistry. This is particularly true for new hazardous psychoactive substances including synthetic cannabimimetics, regularly appearing in illegal drug market. All the factors – various equipment in expert institutions, various approaches to analyzing synthetic cannabimimetics to be found in biological materials, lack of analytical standards – make it difficult to interpret and compare the results obtained from different sources.

Gas chromatography with mass-spectrometric (GC/ MS) detection is widely applied in laboratory practice in the Russian Federation, with the application thereof being combined with labor-intensive and time-consuming sample preparation to make qualitative sampling. In this case metabolite conjugation, extraction and derivatization are to be made when testing urine for cannabimimetics metabolites [1, 2].

Liquid chromatography combined with with a tandem mass-spectrometry (HPLC-MS/MS) method is considered to be the best, as it makes it possible to simplify the sample preparation process to detect metabolites of synthetic cannabimimetics as no deconjugation and derivatization are required [3-5].

In this scientific work, the results of the research of analytical features of synthetic MDMB(N)-073F cannabimimetics found out by gas chromatography methods combined with MS/MS mass spectrometry (GC-MS/ MS) and liquid chromatography of hybrid high-resolution quadrupole-time-of-flight mass spectrometry (HPLC-HRMS), as well as characteristics of major MDM-B(N)-073F metabolite and glucuronide and derivatives thereof using gas chromatography with mass-spectrometric detection (GC-MS) and liquid chromatography with MS/MS mass spectrometry (HPLC-MS/MS) in the urine samples to be applied in expert practice, chemical-toxicological, forensic and chemical analyses have been presented here.

OBJECTS OF RESEARCH

To carry out the study, the following materials were used: plant-based objects with narcotic drugs withdrawn from illegal trafficking and applied to them;. urine samples to be studied under chemical-toxicological and forensic and chemical analyses.

MATERIALS AND METHODS

Synthetic cannabimimetics in plant-based objects were detected and identified by gas-liquid chromatography methods with tandem mass-spectrometry and high performance liquid chromatography with high resolution MS/MS quadrupole-time-of-flight detector.

Gas-liquid chromatography methods with tandem quadrupole mass-spectrometric detector and high performance liquid chromatography with tandem hybrid high-resolution quadrupole-time-of-flight mass spectrometry (HPLC-HRMS) were applied to detect cannabimimetics markers and metabolites in biological material.

Equipment

- Gas chromatograph Agilent 7890 (capillary column DB-5MS, similar to (5% phenyl)-methylpolysiloxane), ID = 0.25mm, length = 30m, thickness of stationary phase film = 0.25 μm) with tandem quadrupole mass-spectrometer MS/MS Agilent 7000 (Agilent, USA);
- Gas chromatograph Agilent 7820 (capillary column HP-5MS (5% phenyl)- methylpolysiloxane), ID = 0.25 mm, length = 30m, thickness of film=0.25 μm) with mass-selective detector Agilent 5975 (Agilent, USA);
- Liquid chromatograph Agilent 1260 (chromatographic column Zorbax Extend C-18 2.1*50 mm, sorbent grain diameter = 1.8 μm) with tandem hybrid high-resolution quadrupole-time-of-flight detector Agilent 6540 (resolution at least 40000) (Agilent, USA);
- Liquid chromatograph Agilent 1260 (chromatographic column 3*150 mm with reversed-phase sorbent Poroshell 120 EC-C18, grain size = 2.7 μm) with tandem mass-spectrometer Agilent 6460 (Agilent, USA);
- 12 position SPE Vacuum Manifold System (Supelco);
- low vacuum pump (KNF lab LABOPORT (France);
- thermal block PE-4030 (Ecros, Russia);
- single-channel vaporizer PE-2300 ("Ecros", Russia);
- microshaker PE-2 ("Ecros", Russia);
- microwave Supra MWS-1824SW (Russia);
- solid-phase extraction cartridges SampliQ EVIDEX (200 mg / 3 ml) (Agilent, USA);
- semi-automatic dispensers with 4–40, 40–200 μl and 0.2–1, 1–5 ml range.

Materials

Bis-trimethylsilyl-trifluoroacetamide (BSTFA) containing 1% trimethylchlorosilane; 2,2,3,3,3-pentafluoropropanol, 2,2,3,3,3-pentafluoropropionic anhydride, methyl iodide, β -glucuronidase, *Type HP-2, From Helix Pomatia*, 100,000 EU / ml (*Sigma-ALDRICH CHEMI*, Germany). The chemicals used in the study are of the "chemically pure" brand. The storage of the urine samples before the study was carried out at + 4°C.

Sample preparation

Plant-based objects preparation (for GC-MS/MS and HPLC-HRMS analyses)

A weighed quantity of 10 mg of the plant-based object was extracted with 10ml of ethanol for 5 minutes. The resulting extract was separated from the plant matrix by centrifugation, diluted with ethanol by 10 times and analyzed by GC-MS/MS and HPLC-HRMS methods.

Preparation of urine samples (applying enzymatic hydrolysis, for GC-MS analysis)

50 μ l of an internal standard alcohol solution (0.2 mg/ml Hexenal, 250 μ l of 1/15 M pH 6 phosphate buffer and 50 μ l of β -glucuronidase) was added to 1 ml of the urine sample. Then the vial was corked up and exposed to 45°C for 2 hours. After cooling down, 2 ml 1/15 M phosphate buffer (pH 4,8) was added. The contents of the vials were centrifugated at 3000 rpm for 10 minutes, the centrifugate was separated from the residue.

For extraction, SPE cartriges SampliQ EVIDEX (200 mg/3 ml) with a mixed phase were used. Conditioning of a sorbent was conducted via succesive transfer of 2 ml of 95% ethanol and 2 ml of 1/15 M phosphate buffer (pH 4.8) through the cartridge. After that, the sample was downloaded at the speed of 1 ml/min. Flushing was conducted in a successive manner: first 1 ml of 1/15 M phosphate buffer (pH 4.8) and then 1 ml of 10% ethanol. Drying the cartridge was carried out in vacuum for 20 minutes. Eluate was derived via double transfer of 2 ml of n-hexane – ethylacetate (2:1) concoction through the cartridge. Eluate was vaporized in the nitrogen flow at 45°C.

Derivatization Methylation

500 μ l of anhydrous acetone, 40 μ l of iodomethane and 20–25 mg of anhydrous potassium carbonate were added to the dry residue of eluate I. The vial was corked up and heated at 60°C in the thermal block for 60 minutes. Then the vial was cooled down, the fluid fraction of the reactive concoction was separated and transferred into a clean vial, then vaporized at 40 °C in the nitrogen flow. The dry residue was dissolved in 100 μ l of anhydrous ethylacetate and 1 μ l of this solution was put into the gas chromatograph evaporator.

Esterification with 2,2,3,3,3-pentafluoropropanol

 20μ l of 2,2,3,3,3-pentafluoropropanol and 60μ l of 2,2,3,3,3-pentafluoropropionic anhydride (washing off the vial walls) were added to the dry residue of eluate, the vial was sealed and MW-irradiated in the 560W microwave oven for 5 minutes. After cooling down, the vial was opened and excess reagents were vaporized in the nitrogen flow (not above 40°C). The dry residue was dissolved in 100µl of anhydrous ethylacetate, and 1µl thereof was added to chromate-mass-spectrometer's evaporator.

Trimethylsilyl esters acquisition

100 μ l of BSTFA containing 1% of trimethylchlorsilane was added to the dry residue of eluate, the vial was corked up, shaken with the microshaker and heated at 80°C in the thermal block for 60 minutes. The vial was cooled down and 2 μ l was put into the chromato-mass-spectrometer's evaporator.

Preparation of urine samples (without hydrolysis, for HPLC analysis)

0.45ml of internal standard mixture in acetonitrile (with 0.03μ m/ml concentration of ethylmorphine and cyclizine *ana*) was added to the urine sample (0.05ml) in Eppendorf tube. The tube was centrifuged at 10000 rpm for 15 minutes, the supernatant layer was transferred to the vial for autosampling, and 2ml of the resulting solution was added to the chromatograph.

Operation mode for GC-MS/MS analysis (gas chromatograph Agilent 7890 with MS/MS quadrupole mass-spectrometer Agilent 7000)

- Chromatograph vaporizer temperature 280°C;
- vaporizer operation mode: split/splitless (15:1 split ratio, with 1 min delay after the sample injection);
- detector interface temperature 280°C;
- initial temperature of the column heating oven 220°C;
- final temperature of the column heating oven 300°C;
- variation of the column temperature 20 degrees/min;
- exposure at the final temperature 5 min;
- carrier gas helium, column flow rate 1 ml/min;
- injection volume 1 ml;
- collision cell gas nitrogen, 1.5ml/min;
- «cooling gas» helium, flow rate 2.25 ml/min;
- collision energy 10–20eV.

Operation mode for HPLC-HRMS analysis (liquid chromatograph Agilent 1260 with high resolution MS/MS hybrid quadrupole-time-of-flight detector Agilent 6540)

- Gradient eluation with phase A (a 0.1% formic acid solution in deionized water) and phase B (acetonitrile) at the increase of the content of phase B from 1% to 100% for 10 minutes;
- volume of injected sample 1 ml;
- flow rate 0.3 ml/min;
- column temperature 45°C;
- electrospray ionization in positive ion mode;
- drying gas temperature (nitrogen) 350°C;
- drying gas flow rate (nitrogen) 8 l/min;
- nebulizer gas pressure (nitrogen) 20 psi;
- capillary voltage 3500 V;
- fragmentor voltage 100 V and 180 V;
- mass-spectrometer operation mode: Auto MS/MS;
- equipment calibration and accuracy correction of

mass measuring in the course of the analysis were made by standard calibrators recommended by the equipment manufacturers.

A part of the previously obtained alcoholic extract to be analyzed was diluted with water and studied under the above conditions.

Operation mode for GC-MS analysis (gas chromatograph Agilent 7820 with mass-selective detector Agilent 5975)

- Flow rate of the carrier gas (helium) through the column 1.5 ml/min;
- working mode of vaporizer split/splitless (low-splitting – 15:1 with the impulse delay of 1 minute after the sample injection);
- the temperatures of the injection port and the line connecting to the mass spectrometer were 250°C and 280°C, respectively;
- the initial temperature of the column was 70°C for 2 minutes; then, the column was heated up to 280°C at the programming speed of 20 degrees/min. and kept at the final temperature for 8 minutes;
- the temperatures of the ion source and the quadrupole were at 230 and 150°C, respectively;
- voltage of the multiplier of the mass-spectrometric detector was set equal to that of the automatic routine adjustment of the detector.
- The registration of mass spectrum for methyl derivatives in the full ion scanning mode was in mass range of 42–450 a.u. The registration of mass spectrum for trimethylsilyl and pentafluoropropyl derivatives in the full ion scanning mode was in the mass range of 43–650 a.u.

The conjugation degree of the major MDMB(N)-073F metabolite of biotransformation phase I in the urine was determined by the ratio of the peak area of methyl ethers for the ion with m/z value 219 and the peak area of the ion m/z 235 for *N*-methylhexenal (internal standard) in eluate I of the urine with enzymatic hydrolysis and by similar procedure without hydrolysis.

Operation mode for HPLC-MS/MS analysis (liquid chromatograph Agilent 1260 with MS/MS mass-spectrometer Agilent 6460)

• Gradient eluation with phases A (a 10 mM solution

of ammonium formate and 0.1% formic acid in deionized water) and B (0,01% formic acid in methanole);

- eluent flow rate was 0.6 ml/min;
- column temperature 50°C;
- gradient mode: 0 1.0 min reaching 95% of phase A, by the 5th minute reducing to 50% of phase A, by the 15th by 2%, by the 17th by 2%, by the 17.1 by 95% and the column regeneration within 3 minutes was 95% of phase A;
- injection volume 2 mcl;
- electrospray ionization in positive ion mode;
- flow of desiccant gas (nitrogen) to the ion source 6 l/min;
- spray gas pressure (nitrogen) 40 psi;
- temperature of desiccant gas 300°C;
- capillary voltage 3500 V;
- fragmentor voltage 125 V;
- mass-spectrometer operation modes: dynamic MRM and Product Ion Scan (mass range: 100–550 Da).

Processing of the chromatograms in order to identify the components of the samples was carried out using *MSD ChemStation E.02.01.1177 (Agilent), MassHunter B.08.02 (Agilent)* and *AMDIS* (The Automatic Mass Spectral Deconvolution and Identification System, NIST) software.

RESULTS AND DISCUSSION

As has been previously shown on the basis of the relative metabolite content in the urine samples, the principal pathway for MDMB(N)-073F cannabimimetics metabolism is MDMB(N)-073F ester decomposition with further conjugation of the resulting product (Fig.1). This metabolite of biotransformation phase I has both the maximum signal intensity in chromatograms of MDMB(N)-073F users and a characteristic mass-spectrum thereby making it possible to be used as a marker for this cannabimimetics [6, 7]. It should be also considered, that in the urine, this metabolite of biotransformation phase I is significantly associated with the conjugated form (Table 1), so in case of applying GC-MS research methods, hydrolysis of conjugates is required.

Sample	561	663	717	721	722	224	705	752	754	756	Medi- an, %
Marker conjugation, %	96	0	49	98	97	97	99	99	99	100	97.5

DOI: 10.19163/2307-9266-2019-7-4-184-197

Figure 1 – Principal MDMB(N)-073F metabolic pathway

Obtaining-methyl, trimethylsilyl and 2,2,3,3,3-pentafluoropropyl esters is considered the most common variant of derivatization in cannabimimetics markers screening in the biological material based on gas chromatography with a quadrupole mass-spectrometric detector.

The formation of methyl ester MDMB(N)-073F

marker corresponding to the original compound (Fig. 2), takes place during methylation, thereby simplifying the compound identification. Mass-spectra, retention indices and structures of trimethylsilyl and 2,2,3,3,3-penta-fluoropropyl esters of MDMB(N)-073F marker, are given in Fig. 3 and 4, respectively.

Figure 2 – Mass-spectrum, retention index and structure of methyl ester of MDMB(N -073F marker

RESEARCH ARTICLE ISSN 2307-9266 e-ISSN 2413-2241

Figure 3 – Mass-spectrum, retention index and structure of trimethylsilyl ester of MDMB(N)-073F marker.

Figure 4 – Mass-spectrum, retention index and structure of 2,2,3,3,3-pentafluoropropyl ester of MDMB(N)-073F marker.

Taking into account the identical structures of MDMB (N)-073F and the methyl derivative of its main metabolite (Fig. 1), to study the properties of MDMB(N)-073F, the analysis of the original cannabimimetic MDMB (N) -073F was carried out on the basis of the methods of

GC-MS / MS and HPLC-HRMS. When applying gas chromatography method with a tandem mass-spectrometric triple quadrupole detector, the fragmentation of basic ions being formed under the electron impact ionization from MDMB(N)-073F was analyzed (Fig. 5–10).

RESEARCH ARTICLE ISSN 2307-9266 e-ISSN 2413-2241

Figure 8 – MS/MS ion spectrum with m/z 275 (collision energy – 10 eV)

According to the mass spectra of individual ions presented in Fig. 5–10, all the ions are seen to be structurally bound together. So, ion with m/z value of 304 a.e.m., comprises ions with m/z values of 219 and 145 a.e.m., and ion with m/z value of 219 a.e.m. compris-

es ion 145 a.e.m., and ion with m/z value of 307 comprises ions with m/z values of 232, 275 and 131 a.e.m. The obtained results presented below, comply with the fragmentation structure impacted by electron impact (Fig. 11).

Figure 11 – Proposed structure of MDMB(N)-073F fragmentation.

Figure 12 – Chromatogram of the plant-based MDMB(N)-073F object (HPLC-HRMS, m/z 364.203, image range ±5 mDa).

The data on the fragmentation of the main ions, obtained in the investigations of MDMB(N)-073F were found in the plant-based objects. The analysis was carried by HPLC-HRMS methods, taking into account the exact masses of the main ions. The chromatogram and

spectrum of MDMB(N)-073F obtained in its analysis, are given in Fig.12 and 13, accordingly. Both theoretical and experimentally found exact masses of MDMB(N)-073F protonated molecule and fragment ions are presented in Table 2. The computed error is also given there.

Figure 13 – MS/MS ion spectrum with m/z 364, 203.

lons corresponding to protonated molecules of the original substance, are known to be within positive electrospray conditions. The ion with the chemical formula of $C_{19}H_{27}FN_3O_3$ and the exact mass of 364, 2031 Da is to be

used in the combination with MDMB(N)-073F structure. The exact molecular mass of the ion measured in the experiment, is different from the mass calculated for 0.27 ppm, thereby proving the accuracy of the proposed chemical formula.

Ion formula	Theoretical mass, Da	Measured mass, Da	Error, ppm
C ₁₉ H ₂₇ FN ₃ O ₃	364.2031	364.2030	0.27
C ₁₇ H ₂₃ FN ₃ O	304.1852	304.1829	7.56
$C_{12}H_{15}FN_{3}O$	236.1193	236.1208	6.35
C ₁₂ H ₁₂ FN ₂ O	219.0928	219.0929	0.46
C ₈ H ₅ N ₂ O	145.0396	145.0397	0.69
C ₄ H ₇	55.0542	55.0540	3.63

Table 2 – Determination of exact masses of protonated molecule and fragment ions of MDMB(N)-073F

A study of the consumer's urine, containing MDMB (N)-073F, by HPLC-MS/MS methods and using multiple reaction registration (MRR) showed the following: apart

from the marker, the conjugate with glucuronic acid are excreted together with the urine. The chromatograms are presented in Fig. 14–17.

Научно-практический журнал ФАРМАЦИЯ И ФАРМАКОЛОГИЯ

Figure 14 – Chromatogram of MDMB(N)-073F user's urine (HPLC-MS/MS,

the total ion current for MRM transitions 350.1 > 145.0 and 350.1 > 219.0). Retention time for MDMB(N)-073F marker and its glucuronide is thereof 12.926 and 12.665 min., respectively

Figure 15 – Chromatogram of MDMB(N)-073F user's urine (HPLC-MS/MS; MRM transitions: above 350.1 > 145.0, below 350.1 > 219.0)

Figure 16 – Chromatogram of MDMB(N)-073F user's urine (HPLC-MS/MS, total ion current for MRM transitions 526.3 > 145.0 and 526.3 > 219.0). Retention time for glucuronide marker of MDMB(N)-073F– 12.670 min.

Figure 17 – Chromatogram of MDMB(N)-073F user's urine (HPLC-MS/MS; MRM transitions: above 526.3 > 145.0, below 526.3 > 219.0).

Mass-spectrum of ions – products of MDMB(N)-073F marker with m/z value of 350 for a protonated molecule – is similar to the spectrum of the unchanged compound (Fig. 13),; the ions with m/z values of 219 and 145 are presented therein (Figures 14, 15). The spectrum of ions – glucuronide products of MDMB(N)-073F marker (m/z 526 for the protonated molecule) – also contains these ions (Fig. 16, 17), thereby making it possible to use them in the registration of MRM transitions for both compounds.

Glucuronide of MDMB(N)-073F marker is a com-

pound ester. This leads to its partial fragmentation in the ion source of liquid mass spectrometers with positive ionization [3]. Fragmentation of glucuronide in the source is basically due to the elimination of glucuronic acid residue. The resulting ion with m/z value of 350 corresponds to the protonated molecule of this MDMB(N)-073F marker itself. Glucuronide instability of MDMB(N)-073F marker makes it possible to use ion with m/z value of 350 as a precursor when finding both compounds (Fig. 14, 15).

The data presented herein connfirm that the major part of MDMB(N)-073F marker is found in the urine of its users as a conjugate with glucuronic acid.

CONCLUSIONS

The structure of MDMB(N)-073F compound has been confirmed by methods of gas chromatography with MS/MS mass-spectrometry and liquid chromatography with hybrid high-resolution quadrupole-time-offlight mass spectrometry. Mass-spectral characteristics of MDMB(N)-073F have been given herein.

Ester decomposition with further conjugation of the resulting acid has been found one of MDMB(N)-073F biotransformation in the human body. The product interacting with glucuronic acid, is the conjugate of MDM-B(N)-073F metabolite of phase I in biotransformation.

Metabolite formed as a result of ester decomposition and its conjugate with glucuronic acid, are recommended to be applied as markers for synthetic MDMB(N)-073F cannabimimetics in the analysis by chromatographic methods; they can be used in regular analytical screening of biological samples.

FINANCIAL SUPPORT AND SPONSORSHIP

This study did not have any financial support from outside organizations.

AUTHOR CONTRIBUTIONS

All authors had equally contributed to the research work.

CONFLICTS OF INTEREST

The authors and peer reviewers of this paper report no conflicts of interest.

REFERENCES

- 1. Dvorskaya ON, Kataev SS, Melentyev AB, Kurdina LN. Markery novykh sinteticheskikh kannabimimetikov v moche [Markers of new synthetic cannabimimetics in urine]. Narcology. 2014;13(3):55-65. Russian.
- Melentyev A B, Kataev SS, Dvorskava ON. Dizavnerski-2. ye narkotiki. Metabolizm i podkhody k analizu v biologicheskikh ob"yektakh [Designer drugs. Metabolism and approaches to analysis in biological media]. Moscow. 2016:326 p. Russian.
- 3. Zaikina OL, Kind AV, Grinshtejn IL, Grigoryev AM. Osobennosti obnaruzheniya glyukuronidirovannykh metabolitov sinteticheskikh kannabimimetikov metodom ZHKH-MS/ MS v moche [Features of glucuronidated metabolites of the synthetic cannabimimetics detection in urine by LC-MC]. Narcology. 2015;14(9):77-82. Russian.
- 4. Zaikina OL, Grigoryev AM. Metabolity fazy II sinteticheskikh kannabimimetikov v moche: nuzhna li probopodgotovka? [Phase II metabolites of synthetic cannabi-mimetics

AUTHORS

Sergey S. Kataev - Candidate of sciences (Chemistry), Chief of the forensic-chemistry division. Perm Regional Bureau of Forensic-Medical Expertise, Perm. ORCID 0000-0001-6742-2054. E-mail: forenschemist@ yandex.ru

Oksana N. Dvorskaya – Candidate of sciences (Pharmacy), Assistant professor of the Chair of Toxicological Chemistry, Perm State Pharmaceutical Academy, Perm. ORCID 0000-0003-4774-8887. E-mail: dvoksnik@gmail. com

Maria A. Gofenberg – Head of Chemical-Toxicological Laboratory of the Regional Narcological Clinic; pharmacist-analyst at Chemical and Toxicology Laboratory of Sverdin urine: is the sample preparation necessary?]. Russian Journal of Forensic Medicine. 2015;1(2):66–67. Russian.

- Labutin AV, Temerdashev AZ. Netselevoy skrining 5. markerov sinteticheskikh kannabinoidov v moche metodom vysokoeffektivnoy zhidkostnoy khromatografii s mass-spektrometricheskim detektirovaniyem [Non-target screening of markers of synthetic cannabinoids in urine using HPLC-MS/MS]. Mass-spektrometria. 2015;12(1):30-38. Russian.
- 6. Kataev SS, Dvorskaya ON, Gofenberg MA. Identification of cannabimimetic mdmb(n)-073f metabolites in urine by method of gas chromatography with mass spectrometric detection. Pharmacy & Pharmacology. 2019;7(2):70-83. https://doi.org/10.19163/2307-9266-2019-7-2-70-83.
- 7. Haschimi B, Mogler L, Halter S, Giorgetti A, Schwarze B, Westphal F, Fischmann S, Auwärter Haschimi V. Detection of the recently emerged synthetic cannabinoid 4F-MDMB-BINACA in 'legal high' products and human urine specimens. Drug Test Anal. 2019. Jun 22. doi: 10.1002/dta.2666.

lovsk Regional Clinical Psychiatric Hospital; assistant of the Department of Pharmacy and Chemistry of Ural State Medical University, Yekaterinburg. ORCID: 0000-0003-2877-1301. E-mail: hoffenberg@yandex.ru

Andrei V. Labutin – expert chemist at Chemical and Toxicology Laboratory of Tomsk Regional Drug Abuse Clinic, Tomsk. ORCID 0000-0002-2719-1578. E-mail: lav877@rambler.ru

Aleksey B. Melentyev - Candidate of sciences (Chemistry), Chief of the forensic-chemistry division. Chelyabinsk Regional Bureau of Forensic-Medical Expertise, Chelyabinsk. ORCID 0000-0003-0470-1114. E-mail: melentjev-a@yandex.ru