Preview

Pharmacy & Pharmacology

Advanced search

Correction of mitochondrial dysfunction with trimethoxy-substituted monocarbonyl curcumin analogues in experimental Alzheimer’s disease

https://doi.org/10.19163/2307-9266-2023-11-6-471-481

Abstract

Alzheimer’s disease (AD) is a neurodegenerative disease that is a terminal form of dementia with an alarming spread rate. The treatment of AD usually involves symptomatic therapy, but the research field for new medicines to correct AD focus on the pathogenetic keys of the disease, i.e., a mitochondrial dysfunction.

The aim of the work was to evaluate the effect of trimethoxy-substituted monocarbonyl curcumin analogues on changes in the mitochondrial function of the hippocampus in AD rats.

Materials and methods. AD was modeled in female Wistar rats by the injection of β-amyloid aggregates 1-42 into the CA1 part of the hippocampus. The tested compounds AZBAX4 and AZBAX6 at a dose of 20 mg/kg each, as well as the reference donepezil at a dose of 50 mg/kg, were administered orally for 30 days after the surgery. After the specified time had passed, the changes in the cellular respiration, a citrate synthase activity, cytochrome-c-oxidase, succinate dehydrogenase, and adenosine triphosphate (ATP) concentrations were evaluated in the mitochondrial fraction of the rat hippocampus.

Results. During the study, it was shown that the use of AZBAX4 and AZBAX6 compounds contributed to an increase in the intensity of aerobic metabolism by 83.9 (p <0.05) and 35.9% (p <0.05), respectively, while reducing the activity of anaerobic one by 27.7 (p <0.05) and 20.6% (p <0.05), respectively. Against the background of the tested compounds AZBAX4 and AZBAX6 administration, there was also a significant increase in the activity of citrate synthase, succinate dehydrogenase and cytochrome-c-oxidase, as well as the level of ATP in the hippocampal tissue by 112.8 (p <0.05) and 117.1% (p <0.05), respectively. The use of donepezil led to a significant increase in the intensity of aerobic reactions – by 24.0% (p <0.05), a citrate synthase activity– by 80.0% (p <0.05) and the ATP concentration – by 68.5% (p <0.05). Against the background of the use of the analyzed substances, a decrease in the apoptosis-inducing factor and mitochondrial hydrogen peroxide is also worth noting.

Conclusion. Based on the obtained data, it can be assumed that the use of AZBAX4 and AZBAX6 compounds contributes to an increase in the functional activity of the mitochondria of hippocampal cells of AD rats, while surpassing the reference donepezil. It is perspective to continue a further study of AZBAX4 and AZBAX6 compounds as possible medicines of a pathogenetic correction of AD.

About the Authors

D. I. Pozdnyakov
Pyatigorsk Medical and Pharmaceutical Institute – branch of Volgograd State Medical University
Russian Federation

Candidate Sciences (Pharmacy), Assistant Professor, Head of the Department of Pharmacology with a course in Clinical Pharmacology of Pyatigorsk Medical and Pharmaceutical Institute – branch of Volgograd State Medical University.

11, Kalinin Ave., Pyatigorsk, Russia, 357532



A. A. Vikhor
Pyatigorsk Medical and Pharmaceutical Institute – branch of Volgograd State Medical University
Russian Federation

5th-year student of the Medical Faculty of Pyatigorsk Medical and Pharmaceutical Institute – branch of Volgograd State Medical University. 

11, Kalinin Ave., Pyatigorsk, Russia, 357532



V. M. Rukovitsina
Pyatigorsk Medical and Pharmaceutical Institute – branch of Volgograd State Medical University
Russian Federation

Candidate of Sciences (Pharmacy), Senior Lecturer of the Department of Organic Chemistry of Pyatigorsk Medical and Pharmaceutical Institute – branch of Volgograd State Medical University. 

11, Kalinin Ave., Pyatigorsk, Russia, 357532



E. T. Oganesyan
Pyatigorsk Medical and Pharmaceutical Institute – branch of Volgograd State Medical University
Russian Federation

Doctor of Sciences (Pharmacy), Professor, Head of the Department of Organic Chemistry of Pyatigorsk Medical and Pharmaceutical Institute – branch of Volgograd State Medical University. 

11, Kalinin Ave., Pyatigorsk, Russia, 357532



References

1. 2023 Alzheimer’s disease facts and figures. Alzheimers Dement. 2023;19(4):1598–695. DOI: 10.1002/alz.13016

2. Pasnoori N, Flores-Garcia T, Barkana BD. Histogram-based features track Alzheimer’s progression in brain MRI. Sci Rep. 2024;14(1):257. DOI: 10.1038/s41598-023-50631-1

3. Rostagno AA. Pathogenesis of Alzheimer’s Disease. Int J Mol Sci. 2022;24(1):107. DOI: 10.3390/ijms24010107

4. Beata BK, Wojciech J, Johannes K, Piotr L, Barbara M. Alzheimer’s disease-biochemical and psychological background for diagnosis and treatment. Int J Mol Sci. 2023;24(2):1059. DOI: 10.3390/ijms24021059

5. Ashleigh T, Swerdlow RH, Beal MF. The role of mitochondrial dysfunction in Alzheimer’s disease pathogenesis. Alzheimers Dement. 2023;19(1):333–42. DOI: 10.1002/alz.12683

6. Reiss AB, Ahmed S, Dayaramani C, Glass AD, Gomolin IH, Pinkhasov A, Stecker MM, Wisniewski T, De Leon J. The role of mitochondrial dysfunction in Alzheimer’s disease: A potential pathway to treatment. Exp Gerontol. 2022;164:111828. DOI: 10.1016/j.exger.2022.111828

7. Zhang B, Zhang C, Wang Y, Cheng L, Wang Y, Qiao Y, Peng D. Alzheimer’s Disease Neuroimaging Initiative. Associations of liver function with plasma biomarkers for Alzheimer’s Disease. Neurol Sci. 2024;4:4. DOI: 10.1007/s10072-023-07284-9

8. Ahmad F, Sachdeva P. Critical appraisal on mitochondrial dysfunction in Alzheimer’s disease. Aging Med (Milton). 2022;5(4):272–80. DOI: 10.1002/agm2.12217

9. Bhatia S, Rawal R, Sharma P, Singh T, Singh M, Singh V. Mitochondrial Dysfunction in Alzheimer’s Disease: Opportunities for Drug Development. Curr Neuropharmacol. 2022;20(4):675–92. DOI: 10.2174/1570159X19666210517114016

10. Pozdnyakov DI. Oxycinnamic acids as NOX4 inhibitors in Alzheimer’s disease therapy. An experimental study // Problems of Biological Medical and Pharmaceutical Chemistry. 2023;26(6):45–9. DOI: 10.29296/25877313-2023-06-07. Russian

11. Pozdnyakov DI. Mitochondrial neuroprotection in Alzheimer’s disease, mediated by the glycitein administration, in an experiment. Crimean therapeutic journal. 2022;(1):59–64. Russian

12. Chainoglou E, Hadjipavlou-Litina D. Curcumin in health and diseases: Alzheimer’s disease and curcumin analogues, derivatives, and hybrids. Int J Mol Sci. 2020;21(6):1975. DOI: 10.3390/ijms21061975

13. Percie du Sert N, Hurst V, Ahluwalia A, Alam S, Avey MT, Baker M, Browne WJ, Clark A, Cuthill IC, Dirnagl U, Emerson M, Garner P, Holgate ST, Howells DW, Karp NA, Lazic SE, Lidster K, MacCallum CJ, Macleod M, Pearl EJ, Petersen OH, Rawle F, Reynolds P, Rooney K, Sena ES, Silberberg SD, Steckler T, Würbel H. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biol. 2020;18(7):e3000410. DOI: 10.1371/journal.pbio.3000410

14. Kim HY, Lee DK, Chung BR, Kim HV, Kim Y. Intracerebroventricular Injection of amyloid-β peptides in normal mice to acutely induce Alzheimer-like cognitive deficits. J Vis Exp. 2016;106:53308. DOI: 10.3791/53308

15. Oganesyan ET, Rukovitsina VM, Abaev VT, Pozdnyakov DI. Study of the patterns of structure-activity relationships in a series of chromone derivatives containing substituents at the c-3 position. Medical Bulletin of Bashkortostan. 2023;18(2(104)):44–7. Russian

16. Rukovitsina V, Oganesyan E, Pozdnyakov D. Synthesis and study of the effect of 3-substituted chromone derivatives on changes in the activity of mitochondrial complex III under experimental cerebral ischemia. Journal of Research in Pharmacy. 2022;26(2):408–20. DOI: 10.29228/jrp.138

17. Gao Y, Ma K, Zhu Z, Zhang Y, Zhou Q, Wang J, Guo X, Luo L, Wang H, Peng K, Liu M. Modified Erchen decoction ameliorates cognitive dysfunction in vascular dementia rats via inhibiting JAK2/STAT3 and JNK/BAX signaling pathways. Phytomedicine. 2023;114:154797. DOI: 10.1016/j.phymed.2023.154797

18. Connolly NMC, Theurey P, Adam-Vizi V, Bazan NG, Bernardi P, Bolaños JP, Culmsee C, Dawson VL, Deshmukh M, Duchen MR, Düssmann H, Fiskum G, Galindo MF, Hardingham GE, Hardwick JM, Jekabsons MB, Jonas EA, Jordán J, Lipton SA, Manfredi G, Mattson MP, McLaughlin B, Methner A, Murphy AN, Murphy MP, Nicholls DG, Polster BM, Pozzan T, Rizzuto R, Satrústegui J, Slack RS, Swanson RA, Swerdlow RH, Will Y, Ying Z, Joselin A, Gioran A, Moreira Pinho C, Watters O, Salvucci M, Llorente-Folch I, Park DS, Bano D, Ankarcrona M, Pizzo P, Prehn JHM. Guidelines on experimental methods to assess mitochondrial dysfunction in cellular models of neurodegenerative diseases. Cell Death Differ. 2018;25(3):542–72. DOI: 10.1038/s41418-017-0020-4

19. Voronkov AV, Pozdnyakov DI, Nigaryan SA, Khouri EI, Miroshnichenko KA, Sosnovskaya AV, Olokhova EA. Evaluation of the mitochondria respirometric function in the conditions of pathologies of various geneses. Pharmacy & Pharmacology. 2019;7(1):20–31. DOI: 10.19163/2307-9266-2019-7-1-20-31

20. Voronkov AV, Pozdnyakov DI, Adzhiakhmetova SL, Chervonnaya NM, Miroshnichenko KA, Sosnovskaya AV, Chereshkova EI. Effect of pumpkin (Cucurbita pepo L.) and marigold (Tagetes patula L.) extracts on hippocampal mitochondria functional activity within conditions of experimental acute brain hypometabolism. Pharmacy & Pharmacology. 2019;7(4):198–207. DOI: 10.19163/2307-9266-2019-7-4-198-207

21. Pozdnyakov DI. The effect of quinazolinone derivatives on mitochondrial function of brain cells in rats with focal cerebral ischemia. Éksperimentalnaya i Klinicheskaya Farmakologiya. 2023;86(5):24–9. DOI: 10.30906/0869-2092-2023-86-5-24-29

22. Wang H, Huwaimel B, Verma K, Miller J, Germain TM, Kinarivala N, Pappas D, Brookes PS, Trippier PC. Synthesis and antineoplastic evaluation of mitochondrial complex ii (succinate dehydrogenase) inhibitors derived from atpenin A5. ChemMedChem. 2017;12(13):1033–44. DOI: 10.1002/cmdc.201700196

23. Li Y, D’Aurelio M, Deng JH, Park JS, Manfredi G, Hu P, Lu J, Bai Y. An assembled complex IV maintains the stability and activity of complex I in mammalian mitochondria. J Biol Chem. 2007;282(24):17557–762. DOI: 10.1074/jbc.M701056200

24. Grassi M, Laubscher B, Pandey AV, Tschumi S, Graber F, Schaller A, Janner M, Aeberli D, Hewer E, Nuoffer JM, Gautschi M. Expanding the p.(Arg85Trp) variant-specific phenotype of HNF4A: Features of glycogen storage disease, liver cirrhosis, impaired mitochondrial function, and glomerular changes. Mol Syndromol. 2023;14(4):347–61. DOI: 10.1159/000529306

25. Swerdlow RH. The Alzheimer’s disease mitochondrial cascade hypothesis: A current overview. J Alzheimers Dis. 2023;92(3):751–68. DOI: 10.3233/JAD-221286

26. Swerdlow RH, Burns JM, Khan SM. The Alzheimer’s disease mitochondrial cascade hypothesis. J Alzheimers Dis. 2010;20(S2):265–79. DOI: 10.3233/JAD-2010-100339

27. Swerdlow RH. Mitochondria and mitochondrial cascades in Alzheimer’s disease. J Alzheimers Dis. 2018;62(3):1403–16. DOI: 10.3233/JAD-170585

28. Tsering W, Hery GP, Phillips JL, Lolo K, Bathe T, Villareal JA, Ruan IY, Prokop S. Transformation of non-neuritic into neuritic plaques during AD progression drives cortical spread of tau pathology via regenerative failure. Acta Neuropathol Commun. 2023;11(1):190. DOI: 10.1186/s40478-023-01688-6

29. Zrinej JE, Larbi AM, Lakhlifi T, Bouachrine M. Computational Approach: 3D-QSAR, molecular docking, ADMET, molecular dynamics simulation investigations, and retrosynthesis of some curcumin analogues as PARP-1 inhibitors targeting colon cancer. New J Chem. 2023;74:20987–1009. DOI: 10.1039/D3NJ03981A

30. Bhandari SV, Kuthe P, Patil SM, Nagras O, Sarkate AP. A review: Exploring synthetic schemes and structure-activity relationship (SAR) studies of mono-carbonyl curcumin analogues for cytotoxicity inhibitory anticancer activity. Curr Org Synth. 2023;20(8):821–37. DOI: 10.2174/1570179420666230126142238

31. Hussain H, Ahmad S, Shah SWA, Ullah A, Rahman SU, Ahmad M, Almehmadi M, Abdulaziz O, Allahyani M, Alsaiari AA, Halawi M, Alamer E. Synthetic Mono-Carbonyl Curcumin Analogues Attenuate Oxidative Stress in Mouse Models. Biomedicines. 2022;10(10):2597. DOI: 10.3390/biomedicines10102597

32. Li PA, Hou X, Hao S. Mitochondrial biogenesis in neurodegeneration. J Neurosci Res. 2017;95(10):2025–9. DOI: 10.1002/jnr.24042

33. Chhimpa N, Singh N, Puri N, Kayath HP. The novel role of mitochondrial citrate synthase and citrate in the pathophysiology of Alzheimer’s disease. J Alzheimers Dis. 2023;94(S1):S453–S472. DOI: 10.3233/JAD-220514

34. Ye CY, Lei Y, Tang XC, Zhang HY. Donepezil attenuates Aβ-associated mitochondrial dysfunction and reduces mitochondrial Aβ accumulation in vivo and in vitro. Neuropharmacology. 2015;95:29–36. DOI: 10.1016/j.neuropharm.2015.02.020

35. Yan J, Jiang J, He L, Chen L. Mitochondrial superoxide/hydrogen peroxide: An emerging therapeutic target for metabolic diseases. Free Radic Biol Med. 2020;152:33–42. DOI: 10.1016/j.freeradbiomed.2020.02.029


Review

For citations:


Pozdnyakov D.I., Vikhor A.A., Rukovitsina V.M., Oganesyan E.T. Correction of mitochondrial dysfunction with trimethoxy-substituted monocarbonyl curcumin analogues in experimental Alzheimer’s disease. Pharmacy & Pharmacology. 2023;11(6):471-481. https://doi.org/10.19163/2307-9266-2023-11-6-471-481

Views: 576


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2307-9266 (Print)
ISSN 2413-2241 (Online)