МОДУЛЯЦИЯ АКТИВНОСТИ РАЗЛИЧНЫХ СИНТАЗ ОКСИДА АЗОТА В КАЧЕСТВЕ ПОДХОДА К ТЕРАПИИ ЭНДОТЕЛИАЛЬНОЙ ДИСФУНКЦИИ
https://doi.org/10.19163/2307-9266-2022-10-2-130-153
Аннотация
Оксид азота как терапевтический подход к лечению сердечно-сосудистых заболеваний привлек внимание исследователей еще в конце XIX века. Являясь вазодилататором, оксид азота может быть уникальным терапевтическим средством для лечения гипертензии и, как следствие, почечной недостаточности и гипертрофии левого желудочка.
Цель. Проанализировать данные литературы о возможных путях модуляции активности различных синтаз оксида азота в качестве подхода к терапии эндотелиальной дисфункции.
Материалы и методы. При поиске материала для написания обзорной статьи использовали такие реферативные базы данных, как PubMed, Google Scholar, e-Library, и др. Поиск осуществлялся по публикациям за период с 1990 по 2021 гг. Параметрами для отбора литературы были выбраны следующие слова и словосочетания: оксид азота; NO-синтаза; эндотелиальная дисфункция; активатор NO-синтазы; ингибитор NO-синтазы.
Результаты. В статье представлена история открытия оксида азота и его биологическая роль, процесс его биосинтеза, а также изоформ ферментов его синтезирующих (NOS): нейрональной – nNOS, эндотелиальной – eNOS и индуцибельной iNOS и их роль в нормальной и патологической физиологии. Рассмотрен процесс разобщения NOS (его молекулярных механизмов) в качестве основы эндотелиальной дисфункции. Представлены примеры фармакологической коррекции (BH4, ингибиторы аргиназы, статины, ресвератрол). Кроме того, описаны активаторы синтаз NO (кальция добезилат, cavNOxin, и некоторые активаторы транскрипции NOS), а также неселективные (L-NMMA, 1-NNA, L-NAME, ADMA, 546C88, VAS203) и селективные (L-NIO, 7-нитроиндазол, аминогуанидин, L-NIL, GW273629, GW274150, кавтратин) ингибиторы синтаз оксида азота.
Заключение. Синтазы оксида азота продолжают оставаться перспективными мишенями для разработки средств, модулирующих их активность для коррекции различных патологий. В качестве терапевтического подхода модуляция активности синтазы оксида азота может быть реализована для лечения эндотелиальной дисфункции, являющейся причиной осложнений многих заболеваний.
Ключевые слова
Об авторах
Д. В. КуркинРоссия
доктор фармацевтических наук, доцент, профессор кафедры клинической фармакологии и интенсивной терапии; первый заместитель директора НЦИЛС ФГБОУ ВО ВолгГМУ Минздрава России
400131, Россия, г. Волгоград, пл. Павших Борцов, д. 1
Е. Е. Абросимова
Россия
аспирант кафедры фармакологии и фармации ИНМФО ФГБОУ ВО ВолгГМУ Минздрава России
400131, Россия, г. Волгоград, пл. Павших Борцов, д. 1
Д. А. Бакулин
Россия
кандидат медицинских наук, старший научный сотрудник лаборатории фармакологии сердечно-сосудистых средств НЦИЛС ФГБОУ ВО ВолгГМУ Минздрава России
400131, Россия, г. Волгоград, пл. Павших Борцов, д. 1
Н. С. Ковалев
Россия
аспирант кафедры фармакологии и фармации ИНМФО ФГБОУ ВО ВолгГМУ Минздрава России
400131, Россия, г. Волгоград, пл. Павших Борцов, д. 1
М. А. Дубровина
Россия
аспирант кафедры фармакологии и фармации ИНМФО ФГБОУ ВО ВолгГМУ Минздрава России
400131, Россия, г. Волгоград, пл. Павших Борцов, д. 1
А. В. Борисов
Россия
научный сотрудник лаборатории фармакологии сердечно-сосудистых средств НЦИЛС ФГБОУ ВО ВолгГМУ Минздрава России
400131, Россия, г. Волгоград, пл. Павших Борцов, д. 1
А. В. Стрыгин
Россия
кандидат медицинских наук, доцент, заместитель директора НЦИЛС ФГБОУ ВО ВолгГМУ Минздрава России
400131, Россия, г. Волгоград, пл. Павших Борцов, д. 1
Е. И. Морковин
Россия
кандидат медицинских наук, доцент, заведующий лабораторией нейропсихофармакологии НЦИЛС ФГБОУ ВО ВолгГМУ Минздрава России
400131, Россия, г. Волгоград, пл. Павших Борцов, д. 1
И. Н. Тюренков
Россия
доктор медицинских наук, профессор, член-корреспондент РАН, заведующий лабораторией фармакологии сердечно-сосудистых средств НЦИЛС; заведующий кафедрой фармакологии и фармации Института НМФО ФГБОУ ВО ВолгГМУ Минздрава России
400131, Россия, г. Волгоград, пл. Павших Борцов, д. 1
Список литературы
1. Levine A.B., Punihaole D., Levine T.B. Characterization of the Role of Nitric Oxide and Its Clinical Applications // Cardiology. – 2012. – Vol. 122, No.1. – P. 55–68. DOI: 10.1159/000338150.
2. Stuart-Smith K. Demystified. Nitric oxide // Mol. Pathol. – 2002. – Vol. 55, No.6. – P. 360–366. DOI: 10.1136/mp.55.6.360.
3. Fukuto J.M. A recent history of nitroxyl chemistry, pharmacology and therapeutic potential // Br. J. Pharmacol. – 2019. – Vol. 176, No.2. – P. 135–146. DOI: 10.1111/bph.14384.
4. Kourosh-Arami M., Hosseini N., Mohsenzadegan M., Komaki A., Joghataei M.T. Neurophysiologic implications of neuronal nitric oxide synthase // Rev. Neurosci. – 2020. – Vol. 31, No. 6. – P. 617–636. DOI: 10.1515/revneuro-2019-0111.
5. Hardingham N., Dachtler J., Fox K. The role of nitric oxide in pre-synaptic plasticity and homeostasis // Frontiers in cellular neuroscience. – 2013. – Vol. 7. – P. 190. DOI: 10.3389/fncel.2013.00190.
6. Dubey H., Gulati K., Ray A. Alzheimer’s Disease: A Contextual Link with Nitric Oxide Synthase. Curr. Mol. Med. – 2020. – Vol. 20, No. 7. – P. 505–515. DOI: 10.2174/1566524019666191129103117.
7. Liskova S. The organ-specific nitric oxide synthase activity in the interaction with sympathetic nerve activity: a hypothesis // Physiol. Res. – 2021. – Vol. 70, No. 2. – P. 169–175. DOI: 10.33549/physiolres.934676.
8. Fender A.C., Dobrev D. Nitric oxide as a fragile switch between cardioprotection and cardiac injury // Int. J. Cardiol. – 2021. – Vol. 343. – P. 102–103. DOI: 10.1016/j.ijcard.2021.09.001.
9. Radziwon-Balicka A., Lesyk G., Back V., Fong T., Loredo-Calderon E.L., Dong B., El-Sikhry H., El-Sherbeni A.A., El-Kadi A., Ogg S., Siraki A., Seubert J.M., Santos-Martinez M.J., Radomski M.W., Velazquez-Martinez C.A., Winship I.R., Jurasz P. Differential eNOS-signalling by platelet subpopulations regulates adhesion and aggregation // Cardiovasc. Res. – 2017. – Vol. 113, No.14. – P. 1719–1731. DOI: 10.1093/cvr/cvx179.
10. Infante T., Costa D., Napoli C. Novel Insights Regarding Nitric Oxide and Cardiovascular Diseases // Angiology. – 2021. – Vol. 72, No.5. – P. 411–425. DOI: 10.1177/0003319720979243.
11. Idrizaj E., Traini C., Vannucchi M.G., Baccari M.C. Nitric oxide: from gastric motility to gastric dysmotility // Int. J. Mol. Sci. – 2021. – Vol. 22, No.18. – Art. No. 9990. DOI: 10.3390/ijms22189990.
12. Hong P.P., Zhu X.X., Yuan W.J., Niu G.J., Wang J.X. Nitric oxide synthase regulates gut microbiota homeostasis by ERK-NF-κB pathway in shrimp // Front. Immunol. – 2021. – Vol. 12. – Art. No. 778098. DOI: 10.3389/fimmu.2021.778098.
13. Sibisi N.C., Snyman C., Myburgh K.H., Niesler C.U. Evaluating the role of nitric oxide in myogenesis in vitro // Biochimie. – 2021. – Vol. S0300-9084, No.21. – P. 00269–8. DOI: 10.1016/j.biochi.2021.11.006.
14. Balke J.E., Zhang L., Percival J.M. Neuronal nitric oxide synthase (nNOS) splice variant function: Insights into nitric oxide signaling from skeletal muscle // Nitric Oxide. – 2019. – Vol. 82. – P. 35–47. DOI: 10.1016/j.niox.2018.11.004.
15. Baig M.S., Zaichick S.V., Mao M., de Abreu A.L., Bakhshi F.R., Hart P.C., Saqib U., Deng J., Chatterjee S., Block M.L., Vogel S.M., Malik A.B., Consolaro M.E.L., Christman J.W., Minshall R.D., Gantner B.N., Bonini M.G. NOS1-derived nitric oxide promotes NF-κB transcriptional activity through inhibition of suppressor of cytokine signaling-1 // J. Exp. Med. – 2015. – Vol. 212, No.10. – P. 1725–1738. DOI: 10.1084/jem.20140654.
16. Hotchkiss R.S., Moldawer L.L., Opal S.M., Reinhart K., Turnbull I.R., Vincent J.L. Sepsis and septic shock // Nat. Rev. Dis. Primers. – 2016. – Vol. 2, No.1. – Art. No. 16045. DOI: 10.1038/nrdp.2016.45.
17. Luiking Y.C., Engelen M.P., Deutz N.E. Regulation of nitric oxide production in health and disease // Curr. Opin. Clin. Nutr. Metab. Care. – 2010. – Vol. 13, No.1. – P. 97–104. DOI: 10.1097/MCO.0b013e328332f99d.
18. Bredt D.S., Snyder S.H. Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme // Proc. Natl. Acad. Sci. U.S.A. – 1990. - Vol. 87, No.2. – P. 682–685. DOI: 10.1073/pnas.87.2.682.
19. Salvemini D., Kim S.F., Mollace V. Reciprocal regulation of the nitric oxide and cyclooxygenase pathway in pathophysiology: relevance and clinical implications // Am. J. Physiol. Regul. Integr. Comp. Physiol. – 2013. – Vol. 304, No.7. – P. 473–487. DOI:10.1152/ajpregu.00355.2012.
20. Palmieri E.M., McGinity C., Wink D.A., McVicar D.W. Nitric Oxide in Macrophage Immunometabolism: Hiding in Plain Sight // Metabolites. – 2020. – Vol. 10, No.11. – Art. No.429. DOI:10.3390/metabo10110429.
21. Förstermann U., Sessa W.C. Nitric oxide synthases: regulation and function // Eur. Heart J. – 2012. – Vol. 33, No.7. – P. 829–837. DOI: 10.1093/eurheartj/ehr304.
22. Forstermann U., Pollock J.S., Schmidt H.H., Heller M., Murad F. Calmodulin-dependent endothelium-derived relaxing factor/nitric oxide synthase activity is present in the particulate and cytosolic fractions of bovine aortic endothelial cells // Proc. Natl. Acad. Sci. USA. – 1991. – Vol. 88, No. 5. – P. 1788–1792. DOI: 10.1073/pnas.88.5.1788.
23. Pollock J.S., Förstermann U., Mitchell J.A., Warner T.D., Schmidt H.H., Nakane M., Murad F. Purification and characterization of particulate endothelium-derived relaxing factor synthase from cultured and native bovine aortic endothelial cells // Proc. Natl. Acad. Sci. USA. – 1991. – Vol. 88, No.23. – P. 10480–10484. DOI: 10.1073/pnas.88.23.10480.
24. Balligand J.L., Kelly R.A., Marsden P.A., Smith T.W., Michel T. Control of cardiac muscle cell function by an endogenous nitric oxide signaling system // Proc. Natl. Acad. Sci. USA. – 1993. – Vol. 90, No.1. – P. 347–351. DOI: 10.1073/pnas.90.1.347.
25. Sase K., Michel T. Expression of constitutive endothelial nitric oxide synthase in human blood platelets // Life Sci. – 1995. – Vol. 57, No.22. – P. 2049–2055. DOI: 10.1016/0024-3205(95)02191-K.
26. Dinerman J.L., Dawson T.M., Schell M.J., Snowman A., Snyder S.H. Endothelial nitric oxide synthase localized to hippocampal pyramidal cells: implications for synaptic plasticity // Proc. Natl. Acad. Sci. USA. – 1994. – Vol. 91, No.10. – P. 4214–4218. DOI: 10.1073/pnas.91.10.4214.
27. Marsden P.A., Heng H.H., Scherer S.W., Stewart R.J., Hall A.V., Shi X.M., Tsui L.C., Schappert K.T. Structure and chromosomal localization of the human constitutive endothelial nitric oxide synthase gene // J. Biol. Chem. – 1993. – Vol. 15, No.23. – P. 17478–17488.
28. Oliveira-Paula G.H., Lacchini R., Tanus-Santos J.E. Endothelial nitric oxide synthase: From biochemistry and gene structure to clinical implications of NOS3 polymorphisms // Gene. – 2016. – Vol. 575, No.2 (Pt 3). – P. 584–599. DOI: 10.1016/j.gene.2015.09.061.
29. Qian J., Fulton D. Post-translational regulation of endothelial nitric oxide synthase in vascular endothelium // Front. Physiol. – 2013. – Vol. 13, No.4. – P. 347. DOI: 10.3389/fphys.2013.00347.
30. Hall A.V., Antoniou H., Wang Y., Cheung A.H., Arbus A.M., Olson S.L, Lu W.C., Kau C.L., Marsden P.A. Structural organization of the human neuronal nitric oxide synthase gene (NOS1) // J. Biol. Chem. – 1994. – Vol. 269, No.52. – P. 33082–33090.
31. Eliasson M.J., Blackshaw S., Schell M.J., Snyder S.H. Neuronal nitric oxide synthase alternatively spliced forms: prominent functional localizations in the brain // Proc. Natl. Acad. Sci. USA. – 1997. – Vol. 94, No.7. – P. 3396–3401. DOI: 10.1073/pnas.94.7.3396.
32. Sharma N.M., Patel K.P. Post-translational regulation of neuronal nitric oxide synthase: implications for sympathoexcitatory states // Expert. Opin. Ther. Targets. – 2017. – Vol. 21, No.1. – P. 11–22. DOI: 10.1080/14728222.2017.1265505.
33. Zhang Y.H., Jin C.Z., Jang J.H., Wang Y. Molecular mechanisms of neuronal nitric oxide synthase in cardiac function and pathophysiology // J. Physiol. – 2014. – Vol. 592, No.15. – P. 3189–3200. DOI: 10.1113/jphysiol.2013.270306.
34. Pautz A., Art J., Hahn S., Nowag S., Voss C., Kleinert H. Regulation of the expression of inducible nitric oxide synthase // Nitric Oxide. – 2010. – Vol. 23, No.2. – P. 75–93. DOI: 10.1016/j.niox.2010.04.007.
35. Förstermann U., Closs E.I., Pollock J.S., Nakane M., Schwarz P., Gath I., Kleinert H. Nitric oxide synthase isozymes. Characterization, purification, molecular cloning, and functions // Hypertension. – 1994. – Vol. 23, No.6 (Pt. 2). – P. 1121–1131. DOI: 10.1161/01.HYP.23.6.1121.
36. Tejero J., Shiva S., Gladwin M.T. Sources of Vascular Nitric Oxide and Reactive Oxygen Species and Their Regulation // Physiol. Rev. – 2019. – Vol. 99, No.1. – P. 311–379. DOI: 10.1152/physrev.00036.2017.
37. Cinelli M.A., Do H.T., Miley G.P., Silverman R.B. Inducible nitric oxide synthase: Regulation, structure, and inhibition // Med. Res. Rev. – 2020. - Vol. 40, No.1. – P. 158-189. DOI: 10.1002/med.21599.
38. Giulivi C., Poderoso J.J., Boveris A. Production of nitric oxide by mitochondria // J. Biol. Chem. – 1998. – Vol. 273, No.18. – P. 11038–11043. DOI: 10.1074/jbc.273.18.11038.
39. Tengan C.H., Rodrigues G.S., Godinho R.O. Nitric oxide in skeletal muscle: role on mitochondrial biogenesis and function // Int. J. Mol. Sci. – 2012. – Vol. 13, No.12. – P. 17160–17184. DOI: 10.3390/ijms131217160.
40. Figueira T.R., Barros M.H., Camargo A.A., Castilho R.F., Ferreira J.C., Kowaltowski A.J., Sluse F.E., Souza-Pinto N.C., Vercesi A.E. Mitochondria as a source of reactive oxygen and nitrogen species: from molecular mechanisms to human health // Antioxid. Redox. Signal. – 2013. – Vol. 18, No.16. – P. 2029–2074. DOI: 10.1089/ars.2012.4729.
41. Tatoyan A., Giulivi C. Purification and characterization of a nitric-oxide synthase from rat liver mitochondria // J. Biol. Chem. – 1998. – Vol. 273, No.18. – P. 11044–11048. DOI: 10.1074/jbc.273.18.11044.
42. Bates T.E., Loesch A., Burnstock G., Clark J.B. Immunocytochemical evidence for a mitochondrially located nitric oxide synthase in brain and liver // Biochem. Biophys. Res. Commun. – 1995. – Vol. 213, No.3. – P. 896–900. DOI: 10.1006/bbrc.1995.2213.
43. Gao S., Chen J., Brodsky S.V., Huang H., Adler S., Lee J.H., Dhadwal N., Cohen-Gould L., Gross S.S., Goligorsky M.S. Docking of endothelial nitric oxide synthase (eNOS) to the mitochondrial outer membrane: a pentabasic amino acid sequence in the autoinhibitory domain of eNOS targets a proteinase K-cleavable peptide on the cytoplasmic face of mitochondria // J. Biol. Chem. – 2004. – Vol. 279, No.16. – P. 15968–15974. DOI: 10.1074/jbc.M308504200.
44. Elfering S.L., Sarkela T.M., Giulivi C. Biochemistry of mitochondrial nitric-oxide synthase // J. Biol. Chem. – 2002. – Vol. 277, No.41. – P. 38079–38086. DOI: 10.1074/jbc.M205256200.
45. Kanai A.J., Pearce L.L., Clemens P.R., Birder L.A., VanBibber M.M., Choi S.Y., de Groat W.C., Peterson J. Identification of a neuronal nitric oxide synthase in isolated cardiac mitochondria using electrochemical detection // Proc. Natl. Acad. Sci. USA. – 2001. – Vol. 98, No.24. – P. 14126–14131. DOI: 10.1073/pnas.241380298.
46. Lacza Z., Snipes J.A., Zhang J., Horváth E.M., Figueroa J.P., Szabó C., Busija D.W. Mitochondrial nitric oxide synthase is not eNOS, nNOS or iNOS // Free Radic. Biol. Med. – 2003. – Vol. 35, No.10. – P. 1217–1228. DOI: 10.1016/s0891-5849(03)00510-0.
47. Venkatakrishnan P., Nakayasu E.S., Almeida I.C., Miller R.T. Absence of nitric-oxide synthase in sequentially purified rat liver mitochondria // J. Biol. Chem. – 2009. – Vol. 284, No.30. – P. 19843–19855. DOI: 10.1074/jbc.M109.003301.
48. Parihar M.S., Nazarewicz R.R., Kincaid E., Bringold U., Ghafourifar P. Association of mitochondrial nitric oxide synthase activity with respiratory chain complex I // Biochem. Biophys. Res. Commun. – 2008. – Vol. 366, No.1. – P. 23–28. DOI: 10.1016/j.bbrc.2007.11.056.
49. Bombicino S.S., Iglesias D.E., Zaobornyj T., Boveris A., Valdez L.B. Mitochondrial nitric oxide production supported by reverse electron transfer // Arch. Biochem. Biophys. – 2016. – Vol. 607. – P. 8–19. DOI: 10.1016/j.abb.2016.08.010.
50. Brookes P.S. Mitochondrial nitric oxide synthase // Mitochondrion. – 2004. – Vol. 3, No.4. – P. 187–204. DOI: 10.1016/j.mito.2003.10.001.
51. Giulivi C. Characterization and function of mitochondrial nitric-oxide synthase // Free Radic. Biol. Med. – 2003. – Vol. 34, No.4. – P. 397–408. DOI: 10.1016/s0891-5849(02)01298-4.
52. Tengan C.H., Moraes C.T. NO control of mitochondrial function in normal and transformed cells // Biochim. Biophys. Acta Bioenerg. – 2017. – Vol. 1858, No.8. – P. 573–581. DOI: 10.1016/j.bbabio.2017.02.009.
53. Shah R.C., Sanker S., Wood K.C., Durgin B.G., Straub A.C. Redox regulation of soluble guanylyl cyclase // Nitric Oxide. – 2018. – Vol. 76. – P. 97–104. DOI: 10.1016/j.niox.2018.03.013.
54. Sharin V.G., Mujoo K., Kots A.Y., Martin E., Murad F., Sharina I.G. Nitric oxide receptor soluble guanylyl cyclase undergoes splicing regulation in differentiating human embryonic cells // Stem. Cells Dev. – 2011. – Vol. 20, No.7. – P. 1287–1293. DOI: 10.1089/scd.2010.0411.
55. Derbyshire E.R., Marletta M.A. Structure and regulation of soluble guanylate cyclase // Annu. Rev. Biochem. – 2012. – Vol. 81. – P. 533–59. DOI: 10.1146/annurev-biochem-050410-100030.
56. Montfort W.R., Wales J.A., Weichsel A. Structure and Activation of Soluble Guanylyl Cyclase, the Nitric Oxide Sensor // Antioxid. Redox Signal. – 2017. – Vol. 26, No.3. – P. 107–121. DOI: 10.1089/ars.2016.6693.
57. Förstermann U., Xia N., Li H. Roles of Vascular Oxidative Stress and Nitric Oxide in the Pathogenesis of Atherosclerosis // Circ. Res. – 2017. – Vol. 120, No.4. – P. 713–735. DOI: 10.1161/CIRCRESAHA.116.309326.
58. Li H., Förstermann U. Uncoupling of endothelial NO synthase in atherosclerosis and vascular disease // Curr. Opin. Pharmacol. – 2013. – Vol. 13, No.2. – P. 161–167. DOI: 10.1016/j.coph.2013.01.006.
59. Roe N.D., Ren J. Nitric oxide synthase uncoupling: a therapeutic target in cardiovascular diseases // Vascul. Pharmacol. – 2012. – Vol. 57, No.5–6. – P. 168–72. DOI: 10.1016/j.vph.2012.02.004.
60. Alkaitis M.S., Crabtree M.J. Recoupling the cardiac nitric oxide synthases: tetrahydrobiopterin synthesis and recycling // Curr. Heart Fail. Rep. – 2012. – Vol. 9, No.3. – P. 200–210. DOI: 10.1007/s11897-012-0097-5.
61. Crabtree M.J., Brixey R., Batchelor H., Hale A.B., Channon K.M. Integrated redox sensor and effector functions for tetrahydrobiopterin- and glutathionylation-dependent endothelial nitric-oxide synthase uncoupling // J. Biol. Chem. – 2013. – Vol. 288, No.1. – P. 561–569. DOI: 10.1074/jbc.M112.415992.
62. Chen C.A., Wang T.Y., Varadharaj S., Reyes L.A., Hemann C., Talukder M.A., Chen Y.R., Druhan L.J., Zweier J.L. S-glutathionylation uncouples eNOS and regulates its cellular and vascular function // Nature. – 2010. – Vol. 468, No.7327. – P. 1115–1158. DOI: 10.1038/nature09599.
63. Chen D.D. Chen, L.Y., Xie, J.B., Shu C., Yang T., Zhou S., Yuan H, Chen A.F. Tetrahydrobiopterin regulation of eNOS redox function // Curr. Pharmaceutical Des. – 2014. – Vol. 20, No.22. – P. 3554–3562. DOI: 10.2174/13816128113196660747.
64. Crabtree M.J., Tatham A.L., Hale A.B., Alp N.J., Channon K.M. Critical role for tetrahydrobiopterin recycling by dihydrofolate reductase in regulation of endothelial nitric-oxide synthase coupling: relative importance of the de novo biopterin synthesis versus salvage pathways // J. Biol. Chem.– 2009. – Vol. 284, No.41. – P. 28128–28136. DOI: 10.1074/jbc.M109.041483.
65. Kietadisorn R., Kietselaer B.L., Schmidt H.H., Moens A.L. Role of tetrahydrobiopterin (BH4) in hyperhomocysteinemia-induced endothelial dysfuction: new indication for this orphan-drug? // Am. J. Physiol.-Endocrinol. Metabol. – 2011. – Vol. 300, No.6. – E1176. DOI: 10.1152/ajpendo.00084.2011.
66. Dikalova A., Aschner J.L., Kaplowitz M.R., Summar M., Fike C.D. Tetrahydrobiopterin oral therapy recouples eNOS and ameliorates chronic hypoxia-induced pulmonary hypertension in newborn pigs // Am. J. Physiol. Lung Cell. Mol Physiol. – 2016. – Vol. 311, No.4. – P. 743–753. DOI: 10.1152/ajplung.00238.2016.
67. Suckling C.J. Gibson, C.L., Huggan, J.K., Morthala, R.R., Clarke B., Kununthur S., Wadsworth R.M., Daff S., Papale D. 6-Acetyl-7, 7-dimethyl-5, 6, 7, 8-tetrahydropterin is an activator of nitric oxide synthases // Bioorg. Med. Chem. Letters. – 2008. – Vol. 18, No.5. – P. 1563–1566. DOI: 10.1016/j.bmcl.2008.01.079.
68. An H., Wei R., Ke J., Yang J., Liu Y., Wang X., Wang G., Hong T. Metformin attenuates fluctuating glucose-induced endothelial dysfunction through enhancing GTPCH1-mediated eNOS recoupling and inhibiting NADPH oxidase // J. Diabetes Complications. – 2016. – Vol. 30, No.6. – P. 1017–1024. DOI: 10.1016/j.jdiacomp.2016.04.018.
69. Caldwell R.B., Toque H.A., Narayanan S.P., Caldwell R.W. Arginase: an old enzyme with new tricks // Trends Pharmacol. Sci. – 2015. – Vol. 36, No.6. – P. 395–405. DOI: 10.1016/j.tips.2015.03.006.
70. Caldwell R.W., Rodriguez P.C., Toque H.A., Narayanan S.P., Caldwell R.B. Arginase: a multifaceted enzyme important in health and disease // Physiol. Rev. – 2018. – Vol. 98, No.2. – P. 641–665. DOI: 10.1152/physrev.00037.2016.
71. Kim J.H., Bugaj L.J., Oh Y.J., Bivalacqua T.J., Ryoo S., Soucy K.G., Santhanam L., Webb A., Camara A., Sikka G., Nyhan D., Shoukas A.A., Ilies M., Christianson D.W., Champion H.C., Berkowitz D.E. Arginase inhibition restores NOS coupling and reverses endothelial dysfunction and vascular stiffness in old rats // J. Appl. Physiol. – 2009. – Vol. 107, No.4. – P. 1249–1257. DOI: 10.1152/japplphysiol.91393.2008.
72. El-Bassossy H.M., El-Fawal R., Fahmy A., Watson M.L. Arginase inhibition alleviates hypertension in the metabolic syndrome // Br. J. Pharmacol. – 2013. – Vol. 169, No.3. – P. 693–703. DOI: 10.1111/bph.12144.
73. Polis B., Srikanth K.D., Gurevich V., Gil-Henn H., Samson A.O. L-Norvaline, a new therapeutic agent against Alzheimer’s disease // Neural Regen. Res. – 2019. – Vol. 14, No.9. – P. 1562. DOI: 10.4103/1673-5374.255980.
74. Rikitake Y., Liao J.K. Rho GTPases, statins, and nitric oxide // Circul. Res. – 2005. – Vol. 97, No.12. – P. 1232–1235. DOI: 10.1161/01.RES.0000196564.18314.23.
75. Rohilla A., Rohilla S., Kumar A., Khan M.U., Deep A. Pleiotropic effects of statins: A boulevard to cardioprotection // Arab. J. Chem. – 2016. – Vol. 9. – P. S21–S27. DOI: 10.1016/j.arabjc.2011.06.025.
76. Gorabi A.M., Kiaie N., Hajighasemi S., Banach M., Penson P.E., Jamialahmadi T., Sahebkar A. Statin-induced nitric oxide signaling: mechanisms and therapeutic implications // J. Clin. Med. – 2019. – Vol. 8, No.12. – Art. No. 2051. DOI: 10.3390/jcm8122051.
77. Margaritis M., Channon K.M., Antoniades C. Statins as regulators of redox state in the vascular endothelium: beyond lipid lowering // Antioxid. Redox. Signal. – 2014. – Vol. 20, No.8. – P. 1198–1215. DOI: 10.1089/ars.2013.5430.
78. Antoniades C., Shirodaria C., Leeson P., Antonopoulos A., Warrick N., Van-Assche T., Cunnington C., Tousoulis D., Pillai R., Ratnatunga C., Stefanadis C., Channon K.M. Association of plasma asymmetrical dimethylarginine (ADMA) with elevated vascular superoxide production and endothelial nitric oxide synthase uncoupling: implications for endothelial function in human atherosclerosis // Eur. Heart J. – 2009. – Vol. 30, No.9. – P. 1142–1150. DOI: 10.1093/eurheartj/ehp061.
79. Serban C., Sahebkar A., Ursoniu S., Mikhailidis D.P., Rizzo M., Lip G.Y., Kees Hovingh G., Kastelein J.J., Kalinowski L., Rysz J., Banach M.A. A systematic review and meta-analysis of the effect of statins on plasma asymmetric dimethylarginine concentrations // Sci. Rep. – 2015. – Vol. 5, No.1. – Art. No. 9902. DOI: 10.1038/srep09902.
80. Xia N., Förstermann U., Li H. Resveratrol and endothelial nitric oxide // Molecules. – 2014. – Vol. 19, No.10. – P. 16102–16121. DOI: 10.3390/molecules191016102.
81. Suschek C., Kolb H., Kolb-Bachofen V. Dobesilate enhances endothelial nitric oxide synthase-activity in macro- and microvascular endothelial cells // Br. J. Pharmacol. – 1997. – Vol. 122, No.7. – P. 1502–1508. DOI: 10.1038/sj.bjp.0701512.
82. Carrizzo A., Lenzi P., Procaccini C., Damato A., Biagioni F., Ambrosio M., Amodio G., Remondelli P., Del Giudice C., Izzo R., Malovini A., Formisano L., Gigantino V., Madonna M., Puca A.A., Trimarco B., Matarese G., Fornai F., Vecchione C. Pentraxin 3 Induces Vascular Endothelial Dysfunction Through a P-selectin/Matrix Metalloproteinase-1 Pathway // Circulation. – 2015. – Vol. 131, No.17. – P. 1495–1505. DOI: 10.1161/CIRCULATIONAHA.114.014822.
83. Leung W.K., Gao L., Siu P.M., Lai C.W. Diabetic nephropathy and endothelial dysfunction: Current and future therapies, and emerging of vascular imaging for preclinical renal-kinetic study // Life Sci. – 2016. – Vol. 166. – P. 121–130. DOI: 10.1016/j.lfs.2016.10.015.
84. Zhou Y., Qi C., Li S., Shao X., Ni Z. Investigation of the Mechanism Underlying Calcium Dobesilate-Mediated Improvement of Endothelial Dysfunction and Inflammation Caused by High Glucose // Mediators Inflamm. – 2019. – Vol. 2019. – Art. ID: 9893682. DOI: 10.1155/2019/9893682.
85. Sison K., Eremina V., Baelde H., Min W., Hirashima M., Fantus I.G., Quaggin S.E. Glomerular structure and function require paracrine, not autocrine, VEGF-VEGFR-2 signaling // J. Am. Soc. Nephrol. – 2010. – Vol. 21, No.10. – P. 1691–1701. DOI: 10.1681/ASN.2010030295.
86. Baelde H.J., Eikmans M., Lappin D.W., Doran P.P., Hohenadel D., Brinkkoetter P.T., van der Woude F.J., Waldherr R., Rabelink T.J., de Heer E., Bruijn J.A. Reduction of VEGF-A and CTGF expression in diabetic nephropathy is associated with podocyte loss // Kidney Int. – 2007. – Vol. 71, No.7. – P. 637–645. DOI: 10.1038/sj.ki.5002101.
87. Haller H., Ji L., Stahl K., Bertram A., Menne J. Molecular Mechanisms and Treatment Strategies in Diabetic Nephropathy: New Avenues for Calcium Dobesilate-Free Radical Scavenger and Growth Factor Inhibition // Biomed. Res. Int. – 2017. – Vol. 2017. – Art. ID: 1909258. DOI: 10.1155/2017/1909258.
88. Kraehling J.R., Sessa W.C. Contemporary Approaches to Modulating the Nitric Oxide-cGMP Pathway in Cardiovascular Disease. Circ Res. – 2017. – Vol. 120, No.7. – P. 1174–1182. DOI: 10.1161/circresaha.117.303776.
89. Hou H.T., Wang J., Zhang X., Wang Z.Q., Chen T.N., Zhang J.L., Yang Q., He G.W. Endothelial nitric oxide synthase enhancer AVE3085 reverses endothelial dysfunction induced by homocysteine in human internal mammary arteries // Nitric Oxide. – 2018. – Vol. 81. – P. 21–27. DOI: 10.1016/j.niox.2018.10.001.
90. White A.R., Ryoo S., Bugaj L., Attarzadeh D.O., Thiyagarajan S., Chen K., Attwater S., Abbot B., Li D., Champion H.C., Shoukas A.A., Nyhan D., Hare J.M., Berkowitz D.E., Tuday E.C. Early changes in vasoreactivity after simulated microgravity are due to an upregulation of the endothelium-dependent nitric oxide/cGMP pathway // Eur. J. Appl. Physiol. – 2010. – Vol. 110, No.2. – P. 395–404. DOI: 10.1007/s00421-010-1514-7.
91. Alderton W.K., Cooper C.E., Knowles R.G. Nitric oxide synthases: structure, function and inhibition // Biochem. J. – 2001. – Vol. 357, No. 3. – P. 593–615 DOI: 10.1042/0264-6021:3570593.
92. Schulman I.H., Hare J.M. Regulation of cardiovascular cellular processes by S-nitrosylation // Biochim. Biophys. Acta. – 2012. – Vol. 1820, No.6. – P. 752–762. DOI: 10.1016/j.bbagen.2011.04.002.
93. Poulos T.L., Li H. Nitric oxide synthase and structure-based inhibitor design // Nitric Oxide. – 2017. – Vol. 63. – P. 68–77. DOI: 10.1016/j.niox.2016.11.004.
94. Wong V.W., Lerner E. Nitric oxide inhibition strategies // Future Sci. OA. – 2015. – Vol. 1, No.1. – Art. ID: FSO35. DOI: 10.4155/fso.15.35.
95. Víteček J., Lojek A., Valacchi G., Kubala L. Arginine-based inhibitors of nitric oxide synthase: therapeutic potential and challenges // Mediators Inflamm. – 2012. – Vol. 2012. – Art. No. 318087. DOI: 10.1155/2012/318087.
96. Park J., Pramanick S., Park D., Yeo J., Lee J., Lee H., Kim W.J. Therapeutic-Gas-Responsive Hydrogel // Adv. Mater. – 2017. – Vol. 29, No.44. – Art. No. 1702859. DOI: 10.1002/adma.201702859.
97. Korhonen R., Lahti A., Hämäläinen M., Kankaanranta H., Moilanen E. Dexamethasone inhibits inducible nitric-oxide synthase expression and nitric oxide production by destabilizing mRNA in lipopolysaccharide-treated macrophages // Mol. Pharmacol. – 2002. – Vol. 62, No.3. – P. 698–704. DOI: 10.1124/mol.62.3.698.
98. Yeo J., Lee Y.M., Lee J., Park D., Kim K., Kim J., Park J., Kim W.J. Nitric Oxide-Scavenging Nanogel for Treating Rheumatoid Arthritis // Nano Lett. – 2019. – Vol. 19, No.10. – P. 6716–6724. DOI: 10.1021/acs.nanolett.9b00496.
99. Putzke J., Seidel B., Huang P.L., Wolf G. Differential expression of alternatively spliced isoforms of neuronal nitric oxide synthase (nNOS) and N-methyl-D-aspartate receptors (NMDAR) in knockout mice deficient in nNOS alpha (nNOS alpha(Delta/Delta) mice) // Brain Res. Mol. Brain Res. – 2000. – Vol.85, No.1–2. – P. 13–23. DOI: 10.1016/s0169-328x(00)00220-5.
100. Frandsen U., Lopez-Figueroa M., Hellsten Y. Localization of nitric oxide synthase in human skeletal muscle // Biochem. Biophys. Res. Commun. – 1996. – Vol. 227, No.1. – P. 88–93. DOI: 10.1006/bbrc.1996.1472.
101. El-Yazbi A.F., Cho W.J., Cena J., Schulz R., Daniel E.E. Smooth muscle NOS, colocalized with caveolin-1, modulates contraction in mouse small intestine // J. Cell. Mol. Med. – 2008. – Vol. 12, No.4. – P. 1404–1415. DOI: 10.1111/j.1582-4934.2008.00335.x.
102. Saluja R., Saini R., Mitra K., Bajpai V.K., Dikshit M. Ultrastructural immunogold localization of nitric oxide synthase isoforms in rat and human eosinophils // Cell Tissue Res. – 2010. – Vol. 340, No. 2. – P. 381–388. DOI: 10.1007/s00441-010-0947-y.
103. Saini R., Singh S. Inducible nitric oxide synthase: An asset to neutrophils // J. Leukoc. Biol. – 2019. – Vol. 105, No.1. – P. 49–61. DOI: 10.1002/JLB.4RU0418-161R.
104. Feron O.C., Moniotte S., Desager J.P., Balligand J.L. Hypercholesterolemia decreases nitric oxide production by promoting the interaction of caveolin and endothelial nitric oxide synthase // J. Clin. Invest. – 1999. – Vol. 103, No.6. – P. 897–905. DOI: 10.1172/JCI4829.
105. Garthwaite J. Concepts of neural nitric oxide-mediated transmission // Eur. J. Neurosci. – 2008. – Vol. 27, No.11. – P. 2783–2802. DOI: 10.1111/j.1460-9568.2008.06285.x.
106. Lajoix A.D., Reggio H., Chardes T., Péraldi-Roux S., Tribillac F., Roye M., Dietz S., Broca C., Manteghetti M., Ribes G., Wollheim C., Gross R. A neuronal isoform of nitric oxide synthase expressed in pancreatic β-cells controls insulin secretion // Diabetes. – 2001. – Vol. 50, No.6. – P. 1311–1323. DOI: 10.2337/diabetes.50.6.1311
107. Schwarz P.M., Kleinert H., Förstermann U. Potential functional significance of brain-type and muscle-type nitric oxide synthase I expressed in adventitia and media of rat aorta // Arterioscler. Thromb. Vasc. Biol. – 1999. – Vol. 19, No.11. – P. 2584–2590. DOI: 10.1161/01.ATV.19.11.2584.
108. Kleinert H., Pautz A., Linker K., Schwarz P.M. Regulation of the expression of inducible nitric oxide synthase // Eur. J. Pharmacol. – 2004. – Vol. 500, No.1–3. – P. 255–266. DOI: 10.1016/j.ejphar.2004.07.030.
109. Förstermann U., Schmidt H.H., Pollock J.S., Sheng H., Mitchell J.A., Warner T.D., Nakane M., Murad F. Isoforms of nitric oxide synthase characterization and purification from different cell types // Biochem. Pharmacol. – 1991. – Vol. 42, No.10. – P. 1849–1857. DOI: 10.1016/0006-2952(91)90581-o.
110. Dombernowsky NW, Ölmestig JNE, Witting N, Kruuse C. Role of neuronal nitric oxide synthase (nNOS) in Duchenne and Becker muscular dystrophies – Still a possible treatment modality? // Neuromuscul. Disord. – 2018. – Vol. 28, No. 11. – P. 914–926. DOI: 10.1016/j.nmd.2018.09.001.
111. Mörlin B., Andersson E., Byström B., Hammarström M. Nitric oxide induces endometrial secretion at implantation time // Acta Obstet Gynecol Scand. – 2005. – Vol. 84, No.11. – P. 1029-1034. DOI: 10.1111/j.0001-6349.2005.00804.x.
112. Lu D., Fu Y., Lopez-Ruiz A., Zhang R., Juncos R., Liu H., Manning R.D.Jr., Juncos L.A., Liu R. Salt-sensitive splice variant of nNOS expressed in the macula densa cells //Am. J. Physiol.-Ren. Physiol. – 2010. – Vol. 298, No. 6. – P. 1465–1471. DOI: 10.1152/ajprenal.00650.2009.
113. Förstermann U., Li H. Therapeutic effect of enhancing endothelial nitric oxide synthase (eNOS) expression and preventing eNOS uncoupling // Br. J. Pharmacol. – 2011. – Vol. 164, No.2. – P. 213–223. DOI: 10.1111/j.1476-5381.2010.01196.x.
114. Moncada S. Nitric oxide: discovery and impact on clinical medicine // J. Royal Soc. Med. – 1999. – Vol. 92, No. 4. – P. 164–169. DOI: 10.1177/014107689909200402.
115. Tojo A., Onozato M.L., Fujita T. Role of macula densa neuronal nitric oxide synthase in renal diseases // Med. Mol. Morph. – 2006. – Vol. 39, No.1. – P. 2–7. DOI: 10.1007/s00795-006-0310-2.
116. Takahashi T. Pathophysiological significance of neuronal nitric oxide synthase in the gastrointestinal tract // J. Gastroenterol. – 2003. – Vol. 38, No.5. – P. 421–430. DOI: 10.1007/s00535-003-1094-y.
117. Xu L., Xie K., Fidler I.J. Therapy of human ovarian cancer by transfection with the murine interferon β gene: role of macrophage-inducible nitric oxide synthase // Human Gene Ther. – 1998. – Vol. 9, No.18. – P. 2699–2708. DOI: 10.1089/hum.1998.9.18-2699.
118. Kröncke K.D., Fehsel K., Kolb-Bachofen V. Inducible nitric oxide synthase and its product nitric oxide, a small molecule with complex biological activities // Biol. Chem. Hoppe Seyler. – 1995. – Vol. 376, No.6. – P. 327–343. DOI: 10.1515/bchm3.1995.376.6.327.
119. Moncada S., Higgs E.A. Endogenous nitric oxide: physiology, pathology and clinical relevance // Eur. J. Clin. Invest. – 1991. – Vol. 21, No.4. – P. 361–374. DOI: 10.1111/j.1365-2362.1991.tb01383.x.
120. Langrehr J.M., Hoffman R.A., Lancaster J.R. (Jr.), Simmons R.L. Nitric oxide - a new endogenous immunomodulator // Transplantation. – 1993. – Vol. 55, No.6. – P. 1205–1212. DOI: 10.1097/00007890-199306000-00001.
121. Aicher A., Heeschen C., Mildner-Rihm C., Urbich C., Ihling C., Technau-Ihling K., Zeiher A.M. Dimmeler S. Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells // Nat. Med. – 2003. – Vol. 9, No.11. – P. 1370–1376. DOI: 10.1038/nm948.
122. Zhou Q.G., Zhu X.H., Nemes A.D., Zhu D.Y. Neuronal nitric oxide synthase and affective disorders // IBRO reports. – 2018. – Vol. 5. – P. 116–132. DOI: 10.1016/j.ibror.2018.11.004.
Рецензия
Для цитирования:
Куркин Д.В., Абросимова Е.Е., Бакулин Д.А., Ковалев Н.С., Дубровина М.А., Борисов А.В., Стрыгин А.В., Морковин Е.И., Тюренков И.Н. МОДУЛЯЦИЯ АКТИВНОСТИ РАЗЛИЧНЫХ СИНТАЗ ОКСИДА АЗОТА В КАЧЕСТВЕ ПОДХОДА К ТЕРАПИИ ЭНДОТЕЛИАЛЬНОЙ ДИСФУНКЦИИ. Фармация и фармакология. 2022;10(2):130-153. https://doi.org/10.19163/2307-9266-2022-10-2-130-153
For citation:
Kurkin D.V., Abrosimova E.E., Bakulin D.A., Kovalev N.S., Dubrovina M.A., Borisov A.V., Strygin A.V., Morkovin E.I., Tyurenkov I.N. ACTIVITY MODULATION OF VARIOUS NITRIC OXIDE SYNTASES AS AN APPROACH TO ENDOTHELIAL DYSFUNCTION THERAPY. Pharmacy & Pharmacology. 2022;10(2):130-153. https://doi.org/10.19163/2307-9266-2022-10-2-130-153