Overview of drugs approved by the FDA in 2022
https://doi.org/10.19163/2307-9266-2023-11-3-193-210
Abstract
The aim of the work is to conduct a review of medications approved by the FDA in 2022.
Materials and methods. In searching for the materials to write this review article, bibliographic databases including PubMed, Google Scholar and e-library.ru were utilized. The search was conducted for the publications spanning the period from 2008 to 2023. Herewith, the following keywords and word combinations were used: new drug approval, NDA, drug authorization, approval package, breakthrough medicine.
Results. The discovery and development of medications are among the most crucial scientific processes in healthcare. Developing a new drug is a highly intricate, expensive, and time-consuming process. Nowadays, the problem of costs reduction and the process of expedited discovering of new medications are particularly pertinent. To optimize the search for active compounds, virtual and high-throughput screenings, machine learning, artificial intelligence, cryo-electron microscopy, and drug repurposing are employed. Simultaneously, the search for original molecules to serve as the basis for innovative drugs continues. This article presents a review of medications approved by the FDA in 2022 for the treatment of various pathologies.
Conclusion. A drug development is a complex and resource-intensive process, with only a small fraction of candidates advancing to clinical trials. A drug design evolves in tandem with societal needs, and this review highlights some of the medications approved by the FDA in 2022. Technological advancements are expected to expedite drug development, potentially reducing the time to the market. Biotechnology, including cell therapy, holds significant prospects, and achievements in genetic mapping and chip technologies will enhance the accessibility of personalized pharmacology.
About the Authors
D. V. KurkinRussian Federation
Doctor of Sciences (Pharmacy), Associate Professor, Professor of the Department of Clinical Pharmacology and Intensive Care, Volgograd State Medical University; Director of the scientific and educational institute “Institute of Pharmacy n.a. N.P. Kravkov" of Yevdokimov Moscow State University of Medicine and Dentistry.
Bld. 1, 20, Delegatskaya Str., Moscow, Russia 127473.
1, Pavshikh Bortsov Sq., Volgograd, Russia, 400131.
E. I. Morkovin
Russian Federation
Candidate of Sciences (Medicine), Associate Professor, Head of the Laboratory of Neuropsychopharmacology, Volgograd State Medical University.
1, Pavshikh Bortsov Sq., Volgograd, Russia, 400131
D. A. Bakulin
Russian Federation
Candidate of Sciences (Medicine), Senior Researcher, Laboratory of Pharmacology of Cardiovascular Drugs, Volgograd State Medical University.
1, Pavshikh Bortsov Sq., Volgograd, Russia, 400131
Yu. V. Gorbunova
Russian Federation
Candidate of Sciences (Pharmacy), Associate Professor, Department of Clinical Pharmacology and Intensive Care, Volgograd State Medical University.
1, Pavshikh Bortsov Sq., Volgograd, Russia, 400131
Yu. A. Kolosov
Russian Federation
Candidate of Sciences (Medicine), Associate Professor, Deputy Director for Academic Affairs, of the scientific and educational institute “Institute of Pharmacy n.a. N.P. Kravkov" of Yevdokimov Moscow State University of Medicine and Dentistry.
Bld. 1, 20, Delegatskaya Str., Moscow, Russia 127473
M. A. Dzhavakhyan
Russian Federation
Doctor of Sciences (Pharmacy), Associate Professor, Chief Research Scientist, All-Russian Scientific Research Institute of Medicinal and Aromatic Plants; Deputy Director for development and implementation of the scientific and educational institute “Institute of Pharmacy n.a. N.P. Kravkov" of Yevdokimov Moscow State University of Medicine and Dentistry.
Bld. 1, 20, Delegatskaya Str., Moscow, Russia 127473.
7, Grin Str., Moscow, Russia, 117216.
I. E. Makarenko
Russian Federation
Candidate of Sciences (Medicine), Head of the Medical Department of Farm-Holding; Researcher of Yevdokimov Moscow State University of Medicine and Dentistry.
Bld. 1, 20, Delegatskaya Str., Moscow, Russia 127473.
Bld. A, 34, Svyaz Str., Strelna Vil., St. Petersburg, Russia, 198515.
R. V. Drai
Russian Federation
Candidate of Sciences (Medicine), Director of Farm-Holding.
Bld. A, 34, Svyaz Str., Strelna Vil., St. Petersburg, Russia, 198515
A. V. Zaborovsky
Russian Federation
Doctor of Sciences (Medicine), Associate Professor, Head of the Department of Pharmacology, Yevdokimov Moscow State University of Medicine and Dentistry.
Bld. 1, 20, Delegatskaya Str., Moscow, Russia 127473
O. V. Shatalova
Russian Federation
Doctor of Sciences (Medicine), Professor at the Department of Clinical Pharmacology and Intensive Care, Volgograd State Medical University.
1, Pavshikh Bortsov Sq., Volgograd, Russia, 400131
A. V. Strygin
Russian Federation
Candidate of Sciences (Medicine), Associate Professor, Deputy Director of Research Center for Innovatie Medicines, Volgograd State Medical University.
1, Pavshikh Bortsov Sq., Volgograd, Russia, 400131
V. I. Petrov
Russian Federation
Doctor of Sciences (Medicine), Professor, Academician of Russian Academy of Sciences, Head of the Department of Clinical Pharmacology and Intensive Care, Director of Research Center for Innovative Medicines, Volgograd State Medical University; Chief Freelance Specialist, Clinical Pharmacologist of the Ministry of Healthcare of the Russian Federation, Honored Scientist of the Russian Federation, Honored Doctor of the Russian Federation.
1, Pavshikh Bortsov Sq., Volgograd, Russia, 400131
A. P. Pleten
Russian Federation
Doctor of Sciences (Biology), Professor of the Department of Biological Chemistry of Yevdokimov Moscow State University of Medicine and Dentistry.
Bld. 1, 20, Delegatskaya Str., Moscow, Russia 127473
A. A. Prokopov
Russian Federation
Doctor of Sciences (Chemistry), Associate Professor, Head of the Department of General and Bioorganic Chemistry of Yevdokimov Moscow State University of Medicine and Dentistry.
Bld. 1, 20, Delegatskaya Str., Moscow, Russia 127473
T. Yu. Tatarenko-Kozmina
Russian Federation
Doctor of Sciences (Biology), Professor, Head of the Department of Medical Biology with the Fundamentals of Cellular and Molecular Biotechnology, Scientific Research Institute “Clinical Medicine n.a. N.A. Semashko”, Yevdokimov Moscow State University of Medicine and Dentistry.
Bld. 1, 20, Delegatskaya Str., Moscow, Russia 127473
References
1. Chan HCS, Shan H, Dahoun T, Vogel H, Yuan S. Advancing Drug Discovery via Artificial Intelligence. Trends Pharmacol Sci. 2019;40(8):592–604. DOI: 10.1016/j.tips.2019.06.004
2. Batool M, Ahmad B, Choi S. A Structure-Based Drug Discovery Paradigm. Int J Mol Sci. 2019;20(11):2783. DOI: 10.3390/ijms20112783
3. Moore TJ, Zhang H, Anderson G, Alexander GC. Estimated Costs of Pivotal Trials for Novel Therapeutic Agents Approved by the US Food and Drug Administration, 2015-2016. JAMA Intern Med. 2018;178(11):1451–7. DOI: 10.1001/jamainternmed.2018.3931
4. Lavecchia A, Di Giovanni C. Virtual screening strategies in drug discovery: a critical review. Curr Med Chem. 2013;20(23):2839–60. DOI: 10.2174/09298673113209990001
5. Berdigaliyev N, Aljofan M. An overview of drug discovery and development. Future Med Chem. 2020;12(10):939–47. DOI: 10.4155/fmc-2019-0307
6. Vamathevan J, Clark D, Czodrowski P, Dunham I, Ferran E, Lee G, Li B, Madabhushi A, Shah P, Spitzer M, Zhao S. Applications of machine learning in drug discovery and development. Nat Rev Drug Discov. 2019;18(6):463–77. DOI: 10.1038/s41573–019-0024-5
7. Markel U, Essani KD, Besirlioglu V, Schiffels J, Streit WR, Schwaneberg U. Advances in ultrahigh-throughput screening for directed enzyme evolution. Chem Soc Rev. 2020;49(1):233–62. DOI: 10.1039/c8cs00981c
8. Robertson MJ, Meyerowitz JG, Skiniotis G. Drug discovery in the era of cryo-electron microscopy. Trends Biochem Sci. 2022;47(2):124–35. DOI: 10.1016/j.tibs.2021.06.008.
9. Parvathaneni V, Kulkarni NS, Muth A, Gupta V. Drug repurposing: a promising tool to accelerate the drug discovery process. Drug Discov Today. 2019;24(10):2076–85. DOI: 10.1016/j.drudis.2019.06.014
10. Mignani S, Huber S, Tomás H, Rodrigues J, Majoral JP. Why and how have drug discovery strategies in pharma changed? What are the new mindsets? Drug Discov Today. 2016;21(2):239–49. DOI: 10.1016/j.drudis.2015.09.007
11. Paul D, Sanap G, Shenoy S, Kalyane D, Kalia K, Tekade RK. Artificial intelligence in drug discovery and development. Drug Discov Today. 2021;26(1):80–93. DOI: 10.1016/j.drudis.2020.10.010
12. Shih HP, Zhang X, Aronov AM. Drug discovery effectiveness from the standpoint of therapeutic mechanisms and indications. Nat Rev Drug Discov. 2018;17(1):19–33. DOI: 10.1038/nrd.2017.194
13. He X, Hui Z, Xu L, Bai R, Gao Y, Wang Z, Xie T, Ye XY. Medicinal chemistry updates of novel HDACs inhibitors (2020 to present). Eur J Med Chem. 2022;227:113946. DOI: 10.1016/j.ejmech.2021.113946
14. Geronikaki A. Recent Trends in Enzyme Inhibition and Activation in Drug Design. Molecules. 2020;26(1):17. DOI: 10.3390/molecules26010017
15. Wooller SK, Benstead-Hume G, Chen X, Ali Y, Pearl FMG. Bioinformatics in translational drug discovery. Biosci Rep. 2017;37(4):BSR20160180. DOI: 10.1042/BSR20160180
16. Carden CP, Sarker D, Postel-Vinay S, Yap TA, Attard G, Banerji U, Garrett MD, Thomas GV, Workman P, Kaye SB, de Bono JS. Can molecular biomarker-based patient selection in Phase I trials accelerate anticancer drug development? Drug Discov Today. 2010;15(3–4):88–97. DOI: 10.1016/j.drudis.2009.11.006
17. Hauser AS, Attwood MM, Rask-Andersen M, Schiöth HB, Gloriam DE. Trends in GPCR drug discovery: new agents, targets and indications. Nat Rev Drug Discov. 2017;16(12):829–42. DOI: 10.1038/nrd.2017.178
18. MacLean F. Knowledge graphs and their applications in drug discovery. Expert Opin Drug Discov. 2021;16(9):1057–69. DOI: 10.1080/17460441.2021.1910673
19. Arrowsmith J. Trial watch: Phase II failures: 2008-2010. Nat Rev Drug Discov. 2011;10(5):328–9. DOI: 10.1038/nrd3439
20. Differding E. Trends in drug discovery over five decades – The European Federation for Medicinal Chemistry International Symposium on Medicinal Chemistry (EFMC-ISMC). Chem Med Chem. 2020;15(24):2352–8. DOI: 10.1002/cmdc.202000840
21. Kinch MS. An analysis of FDA-approved drugs for oncology. Drug Discov Today. 2014;19(12):1831–5. DOI: 10.1016/j.drudis.2014.08.007
22. Kesselheim AS, Hwang TJ, Franklin JM. Two decades of new drug development for central nervous system disorders. Nat Rev Drug Discov. 2015;14(12):815–6. DOI: 10.1038/nrd4793
23. Fordyce CB, Roe MT, Ahmad T, Libby P, Borer JS, Hiatt WR, Bristow MR, Packer M, Wasserman SM, Braunstein N, Pitt B, DeMets DL, Cooper-Arnold K, Armstrong PW, Berkowitz SD, Scott R, Prats J, Galis ZS, Stockbridge N, Peterson ED, Califf RM. Cardiovascular drug development: is it dead or just hibernating? J Am Coll Cardiol. 2015;65(15):1567–82. DOI: 10.1016/j.jacc.2015.03.016
24. Velmurugan D, Pachaiappan R, Ramakrishnan C. Recent trends in drug design and discovery. Curr Top Med Chem. 2020;20(19):1761–70. DOI: 10.2174/1568026620666200622150003
25. Yang X, Wang Y, Byrne R, Schneider G, Yang S. Concepts of artificial intelligence for computer-assisted drug discovery. Chem Rev. 2019;119(18):10520–94. DOI: 10.1021/acs.chemrev.8b00728
26. Jiménez-Luna J, Grisoni F, Weskamp N, Schneider G. Artificial intelligence in drug discovery: recent advances and future perspectives. Expert Opin Drug Discov. 2021;16(9):949–59. DOI: 10.1080/17460441.2021.1909567
27. Beneke F, Mackenrodt MO. Artificial Intelligence and Collusion. IIC 50. 2019:109–34. DOI: 10.1007/s40319-018-00773-x
28. Steels L, Brooks R. (ed.). The artificial life route to artificial intelligence: Building embodied, situated agents. UK: Taylor & Francis Group; 2018. 296 p.
29. Bielecki A. Models of Neurons and Perceptrons: Selected Problems and Challenges. Germany: Springer International Publishing; 2018. 156 p.
30. Tekade RK. The future of pharmaceutical product development and research. Netherlands: Academic Press; 2020. 976 p.
31. Paul SM, Mytelka DS, Dunwiddie CT, Persinger CC, Munos BH, Lindborg SR, Schacht AL. How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat Rev Drug Discov. 2010;9(3):203–14. DOI: 10.1038/nrd3078
32. Gupta R, Srivastava D, Sahu M, Tiwari S, Ambasta RK, Kumar P. Artificial intelligence to deep learning: machine intelligence approach for drug discovery. Mol Divers. 2021;25(3):1315–60. DOI: 10.1007/s11030-021-10217-3
33. Zhu H. Big data and artificial intelligence modeling for drug discovery. Annu Rev Pharmacol Toxicol. 2020;60:573–89. DOI: 10.1146/annurev-pharmtox-010919-023324
34. Vatansever S, Schlessinger A, Wacker D, Kaniskan HÜ, Jin J, Zhou MM, Zhang B. Artificial intelligence and machine learning-aided drug discovery in central nervous system diseases: State-of-the-arts and future directions. Med Res Rev. 2021;41(3):1427–73. DOI: 10.1002/med.21764
35. You Y, Lai X, Pan Y, Zheng H, Vera J, Liu S, Deng S, Zhang L. Artificial intelligence in cancer target identification and drug discovery. Signal Transduct Target Ther. 2022;7(1):156. DOI: 10.1038/s41392-022-00994-0
36. Ciallella HL, Zhu H. Advancing computational toxicology in the big data era by artificial intelligence: data-driven and mechanism-driven modeling for chemical toxicity. Chem Res Toxicol. 2019;32(4):536–47. DOI: 10.1021/acs.chemrestox.8b00393
37. Hessler G, Baringhaus KH. Artificial intelligence in drug design. Molecules. 2018;23(10):2520. DOI: 10.3390/molecules23102520
38. Mak KK, Pichika MR. Artificial intelligence in drug development: present status and future prospects. Drug Discov Today. 2019;24(3):773–80. DOI: 10.1016/j.drudis.2018.11.014
39. Brown N. In silico medicinal chemistry: computational methods to support drug design. UK: Royal Society of Chemistry; 2015. 232 p.
40. Sellwood MA, Ahmed M, Segler MH, Brown N. Artificial intelligence in drug discovery. Future Med Chem. 2018;10(17):2025–8. DOI: 10.4155/fmc-2018-0212
41. Pereira JC, Caffarena ER, Dos Santos CN. Boosting docking-based virtual screening with deep learning. J Chem Inf Model. 2016;56(12):2495–506. DOI: 10.1021/acs.jcim.6b00355
42. Firth NC, Atrash B, Brown N, Blagg J. MOARF, an Integrated Workflow for Multiobjective Optimization: Implementation, Synthesis, and Biological Evaluation. J Chem Inf Model. 2015;55(6):1169–80. DOI: 10.1021/acs.jcim.5b00073
43. Carpenter KA, Huang X. Machine learning-based virtual screening and its applications to alzheimer’s drug discovery: a review. Curr Pharm Des. 2018;24(28):3347–58. DOI: 10.2174/1381612824666180607124038
44. Patel L, Shukla T, Huang X, Ussery DW, Wang S. Machine learning methods in drug discovery. Molecules. 2020;25(22):5277. Published 2020 Nov 12. DOI: 10.3390/molecules25225277
45. Zhang L, Tan J, Han D, Zhu H. From machine learning to deep learning: progress in machine intelligence for rational drug discovery. Drug Discov Today. 2017;22(11):1680–5. DOI: 10.1016/j.drudis.2017.08.010
46. de Oliveira TM, van Beek L, Shilliday F, Debreczeni JÉ, Phillips C. Cryo-EM: The Resolution Revolution and Drug Discovery. SLAS Discov. 2021;26(1):17–31. DOI: 10.1177/2472555220960401
47. Renaud JP, Chari A, Ciferri C, Liu WT, Rémigy HW, Stark H, Wiesmann C. Cryo-EM in drug discovery: achievements, limitations and prospects. Nat Rev Drug Discov. 2018;17(7):471–92. DOI: 10.1038/nrd.2018.77
48. Saur M, Hartshorn MJ, Dong J, Reeks J, Bunkoczi G, Jhoti H, Williams PA. Fragment-based drug discovery using cryo-EM. Drug Discov Today. 2020;25(3):485–90. DOI: 10.1016/j.drudis.2019.12.006
49. Van Drie JH, Tong L. Cryo-EM as a powerful tool for drug discovery. Bioorg Med Chem Lett. 2020;30(22):127524. DOI: 10.1016/j.bmcl.2020.127524
50. Kale MA, Shamkuwar PB, Mourya VK, Deshpande AB, Shelke PA. Drug repositioning: a unique approach to refurbish drug discovery. Curr Drug Discov Technol. 2022;19(1):e140122192307. DOI: 10.2174/1570163818666210316114331
51. Jourdan JP, Bureau R, Rochais C, Dallemagne P. Drug repositioning: a brief overview. J Pharm Pharmacol. 2020;72(9):1145–51. DOI: 10.1111/jphp.13273
52. Nosengo N. Can you teach old drugs new tricks? Nature. 2016;534(7607):314–6. DOI: 10.1038/534314
53. Naylor DM, Kauppi DM, Schonfeld JM. Therapeutic drug repurposing, repositioning and rescue. Drug Discovery. 2015;57. [Internet]. Available from: https://www.researchgate.net/profile/Stephen-Naylor-2/publication/282951546_Therapeutic_drug_repurposing_repositioning_and_rescue_Part_II_Business_review/links/568c102208ae71d5cd04abdc/Therapeutic-drug-repurposing-repositioning-and-rescue-Part-II-Business-review.pdf
54. Dudley J, Berliocchi L. (ed.). Drug repositioning: approaches and applications for neurotherapeutics. USA: CRC press; 2017. 313 p.
55. Langhans SA. Three-dimensional in vitro cell culture models in drug discovery and drug repositioning. Front Pharmacol. 2018;9:6. DOI: 10.3389/fphar.2018.00006
56. Meo SA, Bukhari IA, Akram J, Meo AS, Klonoff DC. COVID-19 vaccines: comparison of biological, pharmacological characteristics and adverse effects of Pfizer/BioNTech and Moderna Vaccines. Eur Rev Med Pharmacol Sci. 2021;25(3):1663–9. DOI: 10.26355/eurrev_202102_24877
57. Patel R, Kaki M, Potluri VS, Kahar P, Khanna D. A comprehensive review of SARS-CoV-2 vaccines: Pfizer, Moderna & Johnson & Johnson. Hum Vaccin Immunother. 2022;18(1):2002083. DOI: 10.1080/21645515.2021.2002083
58. Xia X. Detailed dissection and critical evaluation of the Pfizer/BioNTech and Moderna mRNA Vaccines. Vaccines (Basel). 2021;9(7):734. DOI: 10.3390/vaccines9070734
59. Au L, Larkin J, Turajlic S. Relatlimab and nivolumab in the treatment of melanoma. Cell. 2022;185(26):4866–9. DOI: 10.1016/j.cell.2022.12.003
60. Chen XY, Li YD, Xie Y, Cao LQ, Ashby CR Jr, Zhao H, Chen ZS. Nivolumab and relatlimab for the treatment of melanoma. Drugs Today (Barc). 2023;59(2):91–104. DOI: 10.1358/dot.2023.59.2.3509756
61. Amaria RN, Postow M, Burton EM, Tetzlaff MT, Ross MI, Torres-Cabala C, Glitza IC, Duan F, Milton DR, Busam K, Simpson L, McQuade JL, Wong MK, Gershenwald JE, Lee JE, Goepfert RP, Keung EZ, Fisher SB, Betof-Warner A, Shoushtari AN, Callahan M, Coit D, Bartlett EK, Bello D, Momtaz P, Nicholas C, Gu A, Zhang X, Korivi BR, Patnana M, Patel SP, Diab A, Lucci A, Prieto VG, Davies MA, Allison JP, Sharma P, Wargo JA, Ariyan C, Tawbi HA. Neoadjuvant relatlimab and nivolumab in resectable melanoma. Nature. 2022;611(7934):155–60. DOI: 10.1038/s41586-022-05368-8
62. Tawbi HA, Schadendorf D, Lipson EJ, Ascierto PA,Matamala L, Castillo Gutiérrez E, Rutkowski P, Gogas HJ, Lao CD, De Menezes JJ, Dalle S, Arance A, Grob JJ, Srivastava S, Abaskharoun M, Hamilton M, Keidel S, Simonsen KL, Sobiesk AM, Li B, Hodi FS, Long GV; RELATIVITY-047 Investigators. Relatlimab and Nivolumab versus Nivolumab in untreated advanced melanoma. N Engl J Med. 2022;386(1):24–34. DOI: 10.1056/NEJMoa2109970
63. Diaz RJ, Ali S, Qadir MG, De La Fuente MI, Ivan ME, Komotar RJ. The role of bevacizumab in the treatment of glioblastoma. J Neurooncol. 2017;133(3):455–67. DOI: 10.1007/s11060-017-2477-x
64. Halmos B, Burke T, Kalyvas C, Vandormael K, Frederickson A, Piperdi B. Pembrolizumab+chemotherapy versus atezolizumab+chemotherapy+/-bevacizumab for the first-line treatment of non-squamous NSCLC: A matching-adjusted indirect comparison. Lung Cancer. 2021;155:175–82. DOI: 10.1016/j.lungcan.2021.03.020
65. Li M, Kroetz DL. Bevacizumab-induced hypertension: Clinical presentation and molecular understanding. Pharmacol Ther. 2018;182:152–60. DOI: 10.1016/j.pharmthera.2017.08.012
66. Rosen LS, Jacobs IA, Burkes RL. Bevacizumab in Colorectal Cancer: Current Role in Treatment and the Potential of Biosimilars. Target Oncol. 2017;12(5):599–610. DOI: 10.1007/s11523-017-0518-1
67. Garcia J, Hurwitz HI, Sandler AB, Miles D, Coleman RL, Deurloo R, Chinot OL. Bevacizumab (Avastin®) in cancer treatment: A review of 15 years of clinical experience and future outlook. Cancer Treat Rev. 2020;86:102017. DOI: 10.1016/j.ctrv.2020.102017
68. Keam SJ. Mavacamten: First Approval. Drugs. 2022;82(10):1127–35. DOI: 10.1007/s40265-022-01739-7
69. Langley PC. Concerns with Patient Reported Outcome Measurement and Value Claims for Therapy Response: The Case of Mavacamten and Symptomatic Hypertrophic Cardiomyopathy (SHCM). Innov Pharm. 2022;13(2):10.24926/iip.v13i2.4861. DOI: 10.24926/iip.v13i2.4861
70. Kent CN, Park C, Lindsley CW. Classics in Chemical Neuroscience: Baclofen. ACS Chem Neurosci. 2020;11(12):1740–55. DOI: 10.1021/acschemneuro.0c00254
71. McCormick ZL, Chu SK, Binler D, Neudorf D, Mathur SN, Lee J, Marciniak C. Intrathecal Versus Oral Baclofen: A Matched Cohort Study of Spasticity, Pain, Sleep, Fatigue, and Quality of Life. PM R. 2016;8(6):553–62. DOI: 10.1016/j.pmrj.2015.10.005
72. Romito JW, Turner ER, Rosener JA, Coldiron L, Udipi A, Nohrn L, Tausiani J, Romito BT. Baclofen therapeutics, toxicity, and withdrawal: A narrative review. SAGE Open Med. 2021;9:20503121211022197. DOI: 10.1177/20503121211022197
73. Chavda VP, Ajabiya J, Teli D, Bojarska J, Apostolopoulos V. Tirzepatide, a New Era of Dual-Targeted Treatment for Diabetes and Obesity: A Mini-Review. Molecules. 2022;27(13):4315. DOI: 10.3390/molecules27134315
74. Gettman L. New Drug: Tirzepatide (Mounjaro™). Sr Care Pharm. 2023;38(2):50–62. DOI: 10.4140/TCP.n.2023.50
75. Syed YY. Tirzepatide: First Approval. Drugs. 2022;82(11):1213–20. DOI: 10.1007/s40265-022-01746-8
76. Bieber T, Simpson EL, Silverberg JI, Thaçi D, Paul C, Pink AE, Kataoka Y, Chu CY, DiBonaventura M, Rojo R, Antinew J, Ionita I, Sinclair R, Forman S, Zdybski J, Biswas P, Malhotra B, Zhang F, Valdez H; JADE COMPARE Investigators. Abrocitinib versus Placebo or Dupilumab for Atopic Dermatitis. N Engl J Med. 2021;384(12):1101–12. DOI: 10.1056/NEJMoa2019380
77. Deeks ED, Duggan S. Abrocitinib: First Approval. Drugs. 2021;81(18):2149–57. DOI: 10.1007/s40265-021-01638-3
78. Reich K, Thyssen JP, Blauvelt A, Eyerich K, Soong W, Rice ZP, Hong HC, Katoh N, Valenzuela F, DiBonaventura M, Bratt TA, Zhang F, Clibborn C, Rojo R, Valdez H, Kerkmann U. Efficacy and safety of abrocitinib versus dupilumab in adults with moderate-to-severe atopic dermatitis: a randomised, double-blind, multicentre phase 3 trial. Lancet. 2022;400(10348):273–82. DOI: 10.1016/S0140-6736(22)01199-0
79. Narayan VM, Dinney CPN. Intravesical Gene Therapy. Urol Clin North Am. 2020;47(1):93–101. DOI: 10.1016/j.ucl.2019.09.011
80. Lee A. Nadofaragene Firadenovec: First Approval. Drugs. 2023;83(4):353–7. DOI: 10.1007/s40265-023-01846-z
81. Eichler F, Duncan C, Musolino PL, Orchard PJ, De Oliveira S, Thrasher AJ, Armant M, Dansereau C, Lund TC, Miller WP, Raymond GV, Sankar R, Shah AJ, Sevin C, Gaspar HB, Gissen P, Amartino H, Bratkovic D, Smith NJC, Paker AM, Shamir E, O’Meara T, Davidson D, Aubourg P, Williams DA. Hematopoietic Stem-Cell Gene Therapy for Cerebral Adrenoleukodystrophy. N Engl J Med. 2017;377(17):1630–8. DOI: 10.1056/NEJMoa1700554
82. Ma CY, Li C, Zhou X, Zhang Z, Jiang H, Liu H, Chen HJ,Tse HF, Liao C, Lian Q. Management of adrenoleukodystrophy: From pre-clinical studies to the development of new therapies. Biomed Pharmacother. 2021;143:112214. DOI: 10.1016/j.biopha.2021.112214
Review
For citations:
Kurkin D.V., Morkovin E.I., Bakulin D.A., Gorbunova Yu.V., Kolosov Yu.A., Dzhavakhyan M.A., Makarenko I.E., Drai R.V., Zaborovsky A.V., Shatalova O.V., Strygin A.V., Petrov V.I., Pleten A.P., Prokopov A.A., Tatarenko-Kozmina T.Yu. Overview of drugs approved by the FDA in 2022. Pharmacy & Pharmacology. 2023;11(3):193-210. https://doi.org/10.19163/2307-9266-2023-11-3-193-210