Neuroprotective properties of GABA and its derivatives in diabetic encephalopathy in old animals
https://doi.org/10.19163/2307-9266-2023-11-3-211-227
Abstract
The aim of the work was to evaluate the GABA neuroprotective properties and its structural analogues in old animals after seven months of hyperglycemia.
Materials and methods. Diabetes mellitus was modeled in white outbred male rats (12 months old) by the administration of a streptozotocin (65 mg/kg) and nicotinamide (230 mg/kg) combination. After 6 months, the animals with a postprandial glycemia level between 11 and 18 mmol/l were selected for the study. After the groups had been formed, the animals were administrated with GABA and GABAergic compounds (Compositions МРВАand PPC), respectively, for 1 month, the control group animals were administrated with saline. After the treatment, an oral glucose tolerance test and a set of behavioral tests aimed at studying sensory-motor (Open Field, Adhesion test, Rotarod) and cognitive functions (New Object Recognition and Morris Water Maze), as well as the functional state evaluation of the endothelium were performed. Further on, sampling of blood and brain tissues for a biochemical and enzyme immunoassay (the level of glucagon-like peptide-1 (GLP-1) and TNF-α in serum and the level of Klotho protein, BDNF, Nrf2, NF-κB and malondialdehyd (MDA) in brain homogenates), as well as a morphological analysis of changes in CA1 and CA3 neurons of the hippocampus and somatosensory cortex, was carried out.
Results. GABA and compositions with its derivatives had a pronounced neuroprotective effect in old animals with prolonged hyperglycemia. The hypoglycemic effect of the studied compositions was accompanied by an increase in the production of GLP-1. In the animals with DM, after 6 weeks of the test substances administration, higher rates of sensory-motor and cognitive functions and a less structural damage to the sensory-motor cortex and the brain hippocampus were recorded. These effects may be due to higher levels of the Klotho proteins, Nrf2 and BDNF, as well as lower levels of NF-κB, which may underlie the suppression of the oxidative stress, the reduction of MDA and inflammation (TNF-α).
Conclusion. After 6 weeks of the administration, GABA and its compositions in old animals (19 months old) significantly improved sensory-motor and cognitive functions, reduced negative structural changes in the hippocampus and somatosensory cerebral cortex.
Keywords
About the Authors
I. N. TyurenkovRussian Federation
Doctor of Sciences (Medicine), Professor, Head of the Laboratory of Pharmacology of Cardiovascular Drugs, Scientific Center for Innovative Medicines of Volgograd State Medical University, Corresponding Member of RAS.
1, Pavshikh Bortsov Sq., Volgograd, Russia, 400131
D. A. Bakulin
Russian Federation
Candidate of Sciences (Medicine), Senior Researcher, Laboratory of Pharmacology of Cardiovascular Drugs, Scientific Center for Innovative Medicines of Volgograd State Medical University.
1, Pavshikh Bortsov Sq., Volgograd, Russia, 400131
A. V. Smirnov
Russian Federation
Doctor of Sciences (Medicine), Professor, Head of the Department of Pathological Anatomy, Volgograd State Medical University.
1, Pavshikh Bortsov Sq., Volgograd, Russia, 400131
M. R. Ekova
Russian Federation
Candidate of Sciences (Medicine), Associate Professor of the Department of Pathological Anatomy, Volgograd State Medical University, employee of the laboratory of morphopharmacology of Volgograd Medical Research Center.
1, Pavshikh Bortsov Sq., Volgograd, Russia, 400131
A. I. Bisinbekova
Russian Federation
resident in the specialty “Pathological Anatomy”, Volgograd State Medical University; Junior Researcher of Volgograd Medical Research Center.
1, Pavshikh Bortsov Sq., Volgograd, Russia, 400131
G. L. Snigur
Russian Federation
Doctor of Sciences (Medicine), Associate Professor, Head of the Department of Biology of Volgograd State Medical University; Head of Volgograd Medical Research Center.
1, Pavshikh Bortsov Sq., Volgograd, Russia, 400131
Yu. I. Velikorodnaya
Russian Federation
correspondence postgraduate student of the Department of Pharmacology and Pharmacy of Volgograd State Medical University; researcher of Laboratory of Pathomorphology of Volgograd Medical Research Center.
1, Pavshikh Bortsov Sq., Volgograd, Russia, 400131
E. I. Morkovin
Russian Federation
Candidate of Sciences (Medicine), Associate Professor of Department of Fundamental Medicine and Biology of Scientific Center for Innovative Medicines of Volgograd State Medical University; Head of the Laboratory of Neuropsychopharmacology of Volgograd State Medical University.
1, Pavshikh Bortsov Sq., Volgograd, Russia, 400131
D. V. Verkholyak
Russian Federation
Assistant of the Department of Chemistry of Volgograd State Medical University.
1, Pavshikh Bortsov Sq., Volgograd, Russia, 400131
O. S. Vasilyeva
Russian Federation
Candidate of Sciences (Chemistry), Senior Researcher, Laboratory of Nitro Compounds of Herzen Russian State Pedagogical University.
48, Moika Embankment, St. Petersburg, Russia, 191186
References
1. Magliano DJ, Boyko EJ. IDF Diabetes Atlas 10th edition scientific committee. IDF DIABETES ATLAS [Internet]. 10th ed. Brussels: International Diabetes Federation; 2021. [cited 2023 August 10]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK581934
2. Svarovskaya AV, Garganeeva AA. Diabetes mellitus and heart failure — a modern look at the mechanisms of development. Diabetes mellitus. 2022;25(3):267–74. DOI: 10.14341/DM12648. Russian
3. Bondar IA, Demin AA, Grazhdankina DV. Diabetes mellitus type 2: the relationship of baseline clinical, laboratory and echocardiographic parameters with long-term major adverse cardiovascular events. Diabetes mellitus. 2022;25(2):136–44. DOI: 10.14341/DM12823. Russian
4. van Duinkerken E, Ryan CM. Diabetes mellitus in the young and the old: Effects on cognitive functioning across the life span. Neurobiol Dis. 2020;134:104608. https://doi.org/10.1016/j.nbd.2019.104608
5. Dao L, Choi S, Freeby M. Type 2 diabetes mellitus and cognitive function: understanding the connections. Curr Opin Endocrinol Diabetes Obes. 2023;30(1):7–13. DOI: 10.1097/MED.0000000000000783
6. Sebastian MJ, Khan SK, Pappachan JM, Jeeyavudeen MS. Diabetes and cognitive function: An evidence-based current perspective. World J Diabetes. 2023;14(2):92–109. DOI: 10.4239/wjd.v14.i2.92
7. Xue M, Xu W, Ou YN, Cao XP, Tan MS, Tan L, Yu JT. Diabetes mellitus and risks of cognitive impairment and dementia: A systematic review and meta-analysis of 144 prospective studies. Ageing Res Rev. 2019;55:100944. DOI: 10.1016/j.arr.2019.100944
8. Barbiellini Amidei C, Fayosse A, Dumurgier J, Machado-Fragua MD, Tabak AG, van Sloten T, Kivimäki M, Dugravot A, Sabia S, Singh-Manoux A. Association Between Age at Diabetes Onset and Subsequent Risk of Dementia. JAMA. 2021;325(16):1640–9. DOI: 10.1001/jama.2021.4001
9. Selman A, Burns S, Reddy AP, Culberson J, Reddy PH. The Role of Obesity and Diabetes in Dementia. Int J Mol Sci. 2022;23(16):9267. DOI: 10.3390/ijms23169267
10. Jiménez-Balado J, Eich TS. GABAergic dysfunction, neural network hyperactivity and memory impairments in human aging and Alzheimer’s disease. Semin Cell Dev Biol. 2021;116:146–59. DOI: 10.1016/j.semcdb.2021.01.005
11. Tyurenkov IN, Faibisovich TI, Dubrovina MA, Bakulin DA, Kurkin DV. GABAergic system in the regulation of the functioning of pancreas beta-cells in normal physiological conditions and in diabetes. Uspekhi fiziologicheskih nauk. 2023;54(2):86–104. DOI: 10.31857/s030117982302008x. Russian
12. Prud’homme GJ, Glinka Y, Kurt M, Liu W, Wang Q. The anti-aging protein Klotho is induced by GABA therapy and exerts protective and stimulatory effects on pancreatic beta cells. Biochem Biophys Res Commun. 2017;493(4):1542–7. DOI: 10.1016/j.bbrc.2017.10.029
13. Hagan DW, Ferreira SM, Santos GJ, Phelps EA. The role of GABA in islet function. Front Endocrinol (Lausanne). 2022;13:972115. DOI: 10.3389/fendo.2022.972115
14. Soltani N, Qiu H, Aleksic M, Glinka Y, Zhao F, Liu R, Li Y, Zhang N, Chakrabarti R, Ng T, Jin T, Zhang H, Lu WY, Feng ZP, Prud’homme GJ, Wang Q. GABA exerts protective and regenerative effects on islet beta cells and reverses diabetes. Proc Natl Acad Sci U S A. 2011;108(28):11692–7. DOI: 10.1073/pnas.1102715108
15. Kustova MV, Perfilova VN, Zavadskaya VE, Varlamova SV, Kucheryavenko AS, Muzyko EA, Prokofiev II, Tyurenkov IN. The influence of RSPU-238 and RSPU-260 compounds on vasodilating and antitrombotic functions of rat endothelium after chronic alcoholic intoxication. Medical News of North Caucasus. 2023;18(1):54–8. DOI: 10.14300/mnnc.2023.18013. Russian
16. Tyurenkov IN, Bakulin DA, Borisov AV, Abrosimova EE, Verkholyak DV, Vasileva OS. Endothelioprotective effect of GABA and its new derivative – the MPBA composition under conditions of prolonged diabetic hyperglycemia in animals. Eksperimental’naia i klinicheskaia farmakologiia. 2023;86(7):13–8. DOI: 10.30906/0869-2092-2023-86-7-13-18 Russian
17. Borodkina LE, Bagmetova VV, Tyurenkov IN. The comparative study of neuroprotective and anticonvulsive action of cyclic analogs of GABA – pyracetam, phenotropil, phepiron and its compositions with organic acids. Voprosy biologicheskoj, medicinskoj i farmacevticheskoj himii. 2012;(8):14–20. Russian
18. Tyurenkov IN, Smirnov AV, Bakulin DA, Velikorodnaya YI, Bykhalov LS. Pathomorphosis of experimental diabetic cardiomyopathy during pharmacological correction with succicard. Volgogradskij nauchno-medicinskij zhurnal. 2023;20(1):53–7. Russian
19. Hladovec J. Circulating endothelial cells as a sign of vessel wall lesions. Physiol Bohemoslov. 1978;27(2):140–4.
20. Peng X, Wang X, Fan M, Zhao J, Lin L, Liu J. Plasma levels of von Willebrand factor in type 2 diabetes patients with and without cardiovascular diseases: A meta-analysis. Diabetes Metab Res Rev. 2020;36(1):e3193. DOI: 10.1002/dmrr.3193
21. Hamed SA. Brain injury with diabetes mellitus: evidence, mechanisms and treatment implications. Expert Rev Clin Pharmacol. 2017;10(4):409–28. DOI: 10.1080/17512433.2017.1293521
22. van de Vorst IE, Koek HL, de Vries R, Bots ML, Reitsma JB, Vaartjes I. Effect of Vascular Risk Factors and Diseases on Mortality in Individuals with Dementia: A Systematic Review and Meta-Analysis. J Am Geriatr Soc. 2016;64(1):37–46. DOI: 10.1111/jgs.13835
23. Anstey KJ, Ee N, Eramudugolla R, Jagger C, Peters R. A Systematic Review of Meta-Analyses that Evaluate Risk Factors for Dementia to Evaluate the Quantity, Quality, and Global Representativeness of Evidence. J Alzheimers Dis. 2019;70(s1):S165–S186. DOI: 10.3233/JAD-190181
24. Prud’homme GJ, Kurt M, Wang Q. Pathobiology of the Klotho Antiaging Protein and Therapeutic Considerations. Front Aging. 2022;3:931331. DOI: 10.3389/fragi.2022.931331
25. Abraham CR, Li A. Aging-suppressor Klotho: Prospects in diagnostics and therapeutics. Ageing Res Rev. 2022;82:101766. DOI: 10.1016/j.arr.2022.101766
26. Hanson K, Fisher K, Hooper NM. Exploiting the neuroprotective effects of α-klotho to tackle ageing- and neurodegeneration-related cognitive dysfunction. Neuronal Signal. 2021;5(2):NS20200101. DOI: 10.1042/NS20200101
27. Kim OY, Song J. The importance of BDNF and RAGE in diabetes-induced dementia. Pharmacol Res. 2020;160:105083. DOI: 10.1016/j.phrs.2020.105083
28. Moosaie F, Mohammadi S, Saghazadeh A, Dehghani Firouzabadi F, Rezaei N. Brain-derived neurotrophic factor in diabetes mellitus: A systematic review and meta-analysis. PLoS One. 2023;18(2):e0268816. DOI: 10.1371/journal.pone.0268816
29. Magariños AM, McEwen BS. Experimental diabetes in rats causes hippocampal dendritic and synaptic reorganization and increased glucocorticoid reactivity to stress. Proc Natl Acad Sci U S A. 2000;97(20):11056–61. DOI: 10.1073/pnas.97.20.11056
30. Wrighten SA, Piroli GG, Grillo CA, Reagan LP. A look inside the diabetic brain: Contributors to diabetes-induced brain aging. Biochim Biophys Acta. 2009;1792(5):444–53. DOI: 10.1016/j.bbadis.2008.10.013
31. Kiani B, Yarahmadi S, Nabi-Afjadi M, Eskandari H, Hasani M, Abbasian Z, Bahreini E. A Comprehensive Review on the Metabolic Cooperation Role of Nuclear Factor E2-Related Factor 2 and Fibroblast Growth Factor 21 against Homeostasis Changes in Diabetes. Clinical Diabetology, 2022;11(6):409–19. DOI: 10.5603/dk.a2022.0051
32. Chun KS, Raut PK, Kim DH, Surh YJ. Role of chemopreventive phytochemicals in NRF2-mediated redox homeostasis in humans. Free Radic Biol Med. 2021;172:699–715. DOI: 10.1016/j.freeradbiomed.2021.06.031
33. Lee J, Jang J, Park SM, Yang SR. An Update on the Role of Nrf2 in Respiratory Disease: Molecular Mechanisms and Therapeutic Approaches. Int J Mol Sci. 2021;22(16):8406. DOI: 10.3390/ijms22168406
34. Wang YH, Gao X, Tang YR, Yu Y, Sun MJ, Chen FQ, Li Y. The Role of NF-κB/NLRP3 Inflammasome Signaling Pathway in Attenuating Pyroptosis by Melatonin Upon Spinal Nerve Ligation Models. Neurochem Res. 2022;47(2):335–46. DOI: 10.1007/s11064-021-03450-7
35. van der Horst D, Carter-Timofte ME, van Grevenynghe J, Laguette N, Dinkova-Kostova AT, Olagnier D. Regulation of innate immunity by Nrf2. Curr Opin Immunol. 2022;78:102247. DOI: 10.1016/j.coi.2022.102247
36. Milne NT, Bucks RS, Davis WA, Davis TME, Pierson R, Starkstein SE, Bruce DG. Hippocampal atrophy, asymmetry, and cognition in type 2 diabetes mellitus. Brain Behav. 2017;8(1):e00741. DOI: 10.1002/brb3.741
37. Kirshenbaum GS, Chang CY, Bompolaki M, Bradford VR, Bell J, Kosmidis S, Shansky RM, Orlandi J, Savage LM, Harris AZ, David Leonardo E, Dranovsky A. Adult-born neurons maintain hippocampal cholinergic inputs and support working memory during aging. Mol Psychiatry. 2023. DOI: 10.1038/s41380-023-02167-z
38. Zhou X, Zhu Q, Han X, Chen R, Liu Y, Fan H, Yin X. Quantitative-profiling of neurotransmitter abnormalities in the disease progression of experimental diabetic encephalopathy rat. Can J Physiol Pharmacol. 2015;93(11):1007–13. DOI: 10.1139/cjpp-2015-0118
39. Li X, Li Z, Li B, Zhu X, Lai X. Klotho improves diabetic cardiomyopathy by suppressing the NLRP3 inflammasome pathway. Life Sci. 2019;234:116773. DOI: 10.1016/j.lfs.2019.116773
40. Landry T, Shookster D, Huang H. Circulating α-klotho regulates metabolism via distinct central and peripheral mechanisms. Metabolism. 2021;121:154819. DOI: 10.1016/j.metabol.2021.154819
41. Youssef OM, Morsy AI, El-Shahat MA, Shams AM, Abd-Elhady SL. The neuroprotective effect of simvastatin on the cerebellum of experimentally-induced diabetic rats through klotho upregulation: An immunohistochemical study. J Chem Neuroanat. 2020;108:101803. DOI: 10.1016/j.jchemneu.2020.101803
42. Yi SS. Disease predictability review using common biomarkers appearing in diabetic nephropathy and neurodegeneration of experimental animals. Lab Anim Res. 2022;38(1):3. DOI: 10.1186/s42826-022-00113-8
43. Tyurenkov IN, Perfilova VN, Nesterova AA, Glinka Y. Klotho Protein and Cardio-Vascular System. Biochemistry (Mosc). 2021;86(2):132–45. DOI: 10.1134/S0006297921020024
44. Nesterova AA, Glinka EYu, Tyurenkov IN, Perfilova VN. Protein klotho – universal regulator of physiological processes in the organism. Uspekhi fiziologicheskih nauk. 2020;51(2):88–104. DOI: 10.31857/S0301179820020083. Russian
Review
For citations:
Tyurenkov I.N., Bakulin D.A., Smirnov A.V., Ekova M.R., Bisinbekova A.I., Snigur G.L., Velikorodnaya Yu.I., Morkovin E.I., Verkholyak D.V., Vasilyeva O.S. Neuroprotective properties of GABA and its derivatives in diabetic encephalopathy in old animals. Pharmacy & Pharmacology. 2023;11(3):211-227. https://doi.org/10.19163/2307-9266-2023-11-3-211-227