Preview

Pharmacy & Pharmacology

Advanced search

Antitumor activity of three new azoloazine derivatives in orthotopic transplantation model of human breast cancer cells into mice

https://doi.org/10.19163/2307-9266-2023-11-4-291-300

Abstract

Breast cancer (BC) is one of the most common types of malignant tumors, which makes scientific research in this area extremely relevant. The difficulties of breast cancer chemotherapy stimulate the search for new drugs to treat this nosology. Derivatives of imidazotriazine and imidazotetrazine, which are analogues of the antitumor drug temozolamide, can be ones of the promising drugs in this regard.

The aim of the work was to evaluate the antitumor activity of three new azoloazine derivatives in a xenogeneic breast cancer model in mice in vivo.

Materials and methods. A study was conducted on a xenogeneic model of BC. After the immunosuppression with azathioprine, 48 white BALB/c mice were injected with MCF-7 cells, test derivatives, and the reference drug epirubicin at doses of 1/2 IC50 and 1/10 IC50, into the base of the mammary gland once. The body weight of the mice was monitored; on the 15th day, at the end of the experiment, the relative volume was assessed.

Results and discussion. Among the three compounds studied, imidazotetrazine 1 showed the most encouraging results: stopping the loss of body weight in the mice caused by the administration of tumor cells, and reducing the tumor volume on the 15th day of the experiment to 50.6% of that in the control when using a dose of 1/10 IC50, up to 39.2% – when using a dose of 1/2 IC50, which significantly exceeded the values of the reference drug epirubicin and the values in the control group. In the histological examination, the signs of spread and preservation of tumor cells viability of the MCF-7 line after its administration were minimal, the value of the histological malignancy index decreased by 9.3% of the control value.

Conclusion. Among the tested azoloazine derivatives, 3-cyclohexyl-4-oxoimidazo[5,1-d][1,2,3,5]tetrazine-8-N-piperidinylcarboxamide is the undisputed leader, causing inhibition of the tumor growth in a xenogeneic model in vivo.

About the Authors

A. H. Al-Humairi
Volgograd State Medical University. Research institute of Pharmacology and Regenerative Medicine named after E.D. Goldberg, Tomsk National Research Medical Center of the Russian Academy of Sciences
Russian Federation

PhD Pharmacology, Clinical Pharmacology and Oncology, radiation therapy, Lecturer at the Department of Disaster Medicine at the Institute of Public Health, Volgograd State Medical University; postdoctoral fellow of the Laboratory of Physiology, Molecular and Clinical Pharmacology, Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, the Russian Academy of Sciences. 

1, Pavshih Borcov Sq., Volgograd, Russia, 400131.

3, Lenin Ave., Tomsk, Russia, 634028



D. L. Speransky
Volgograd State Medical University
Russian Federation

Doctor of Sciences (Medicine), Professor, Professor of the Department of Oncology, Hematology and Transplantology at the Institute of Continuing Medical and Pharmaceutical Education, Volgograd State Medical University.

1, Pavshih Borcov Sq., Volgograd, Russia, 400131



V. V. Novochadov
Volgograd State University
Russian Federation

Doctor of Sciences (Medicine), Professor, Professor of the Department of Biology and Bioengineering at the Institute of Natural Sciences, Volgograd State University.

100, Universitetskiy Ave., Russia, 400062



S. V. Poroisky
Volgograd State Medical University
Russian Federation

Doctor of Sciences (Medicine), Associate Professor, Head of the Department of Disaster Medicine at the Institute of Public Health, Volgograd State Medical University.

1, Pavshih Borcov Sq., Volgograd, Russia, 400131



N. V. Cherdyntseva
Research Institute of Oncology, Tomsk National Research Medical Center of the Russian Academy of Sciences
Russian Federation

Doctor of Sciences (Medicine), Professor, Deputy Director for Scientific and Therapeutic Work of the Research Institute of Oncology, Tomsk National Research Medical Center, the Russian Academy of Sciences; Corresponding Member of the Russian Academy of Sciences. 

5, Kooperativnyj Ln., Tomsk, Russia, 634009



V. V. Udut
Research institute of Pharmacology and Regenerative Medicine named after E.D. Goldberg, Tomsk National Research Medical Center of the Russian Academy of Sciences
Russian Federation

Doctor of Sciences (Medicine), Professor, Deputy Director for Scientific and Therapeutic Work, Head of the Laboratory of Physiology, Molecular and Clinical Pharmacology, Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, the Russian Academy of Sciences. 

3, Lenin Ave., Tomsk, Russia, 634028



References

1. Gradishar WJ, Anderson BO, Abraham J, Aft R, Agnese D, Allison KH, Blair SL, Burstein HJ, Dang C, Elias AD, Giordano SH, Goetz MP, Goldstein LJ, Isakoff SJ, Krishnamurthy J, Lyons J, Marcom PK, Matro J, Mayer IA, Moran MS, Mortimer J, O’Regan RM, Patel SA, Pierce LJ, Rugo HS, Sitapati A, Smith KL, Smith ML, Soliman H, Stringer-Reasor EM, Telli ML, Ward JH, Young JS, Burns JL, Kumar R. Breast Cancer, Version 3.2020, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw. 2020;18(4):452–78. DOI: 10.6004/jnccn.2020.0016

2. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49. DOI: 10.3322/caac.21660

3. Wilkinson L, Gathani T. Understanding breast cancer as a global health concern. Br J Radiol 2022;95:20211033. DOI: 10.1259/bjr.20211033

4. Akram M, Iqbal M, Daniyal M, Khan AU. Awareness and current knowledge of breast cancer. Biol Res 2017;50:33. DOI: 10.1186/s40659-017-0140-9

5. Rositch AF, Unger-Saldaña K, DeBoer RJ, Nganga A, Weiner BJ. The role of dissemination and implementation science in global breast cancer control programs: Frameworks, methods, and examples. Cancer. 2020;126:2394–404. DOI: 10.1002/cncr.32877

6. Longacre M, Snyder NA, Housman G, Leary M, Lapinska K, Heerboth S, Willbanks A, Sarkar S. A comparative analysis of genetic and epigenetic events of breast and ovarian cancer related to tumorigenesis. Int J Mol Sci. 2016;17(5):759. DOI: 10.3390/ijms17050759

7. Feiten S, Dünnebacke J, Friesenhahn V, Heymanns J, Köppler H, Meister R, Thomalla J, van Roye C, Wey D, Weide R. Follow-up reality for breast cancer patients – standardised survey of patients and physicians and analysis of treatment data. Geburtshilfe Frauenheilkd. 2016;76(5):557–63. DOI: 10.1055/s-0042-106210

8. Asif HM, Sultana S, Ahmed S, Akhtar N, Tariq M. HER-2 Positive breast cancer – a mini-review. Asian Pac J Cancer Prev. 2016;17(4):1609–15. DOI: 10.7314/apjcp.2016.17.4.1609

9. Azamjah N, Soltan-Zadeh Y, Zayeri F. Global trend of breast cancer mortality rate: a 25-year study. Asian Pac J Cancer Prev. 2019;20:2015–20. DOI: 10.31557/APJCP.2019.20.7.2015

10. Hassan MS, Ansari J, Spooner D, Hussain SA. Chemotherapy for breast cancer (Review). Oncol Rep 2010;24:1121–31. DOI: 10.3892/or_00000963

11. Zhukova LG, Andreeva II, Zavalishina LE, Zakiriakhodzhaev AD, Koroleva IA, Nazarenko AV, Paltuev R, Parokonnaia A, Petrovskii A, Portnoi S, Semiglazov V, Semiglazova T, Stenina M, Stepanova A, Trofimova O, Tyulyandin S, Frank G, Frolova M, Shatova I, Gevorkian T. Breast cancer. J Modern Oncol. 2021;23:5–40. DOI: 10.26442/18151434.2021.1.200823

12. Shirazi F, Zarghi A, Kobarfard F, Zendehdel R, Nakhjavani M, Arfaiee S, Zebardast T, Mohebi S, Anjidani N, Ashtarinezhad A, Shoeibi S. Remarks in successful cellular investigations for fighting breast cancer using novel synthetic compounds. In: Breast Cancer-Focusing Tumor Microenvironment, Stem cells and Metastasis. InTech; 2011. DOI: 10.5772/23005

13. Garza-Morales R, Gonzalez-Ramos R, Chiba A, Montes de Oca-Luna R, McNally LR, McMasters KM, Gomez-Gutierrez JG. Temozolomide enhances triple-negative breast cancer virotherapy in vitro. Cancers (Basel) 2018;10:144. DOI: 10.3390/cancers10050144

14. Stevens MFG. Temozolomide – birth of a blockbuster. Drug Discovery. 2009;(7): 48–51.

15. Harbeck N, Gnant M. Breast cancer. Lancet. 2017;389(10074):1134–50. DOI: 10.1016/S0140-6736(16)31891-8

16. Moody C, Wheelhouse R. The medicinal chemistry of imidazotetrazine prodrugs. Pharmaceuticals (Basel). 2014;7:797–838. DOI: 10.3390/ph7070797

17. Mndlyan EYu, Semushina SG, Rzhevsky DI, Novikova NI, Kalabina EA, Komkov DS, Maslennikova AYu, Murashev AN, Holmuhamedov EL. Establishment of an orthotopic tumor model in the mammary gland of BALB/C nude mice using human breast cancer MCF-7 cells and their VDAC-deficient derivatives. Siberian journal of oncology. 2022;21(1):72–84. DOI: 10.21294/1814-4861-2022-21-1-72-84. Russian

18. Treshalina HM. Immunodeficient mice balb/c nude and modeling of various types of tumor growth for preclinical studies. Russian Journal of Biotherapy. 2017;16(3):6–13. DOI: 10.17650/1726-9784-2017-16-3-6-13. Russian

19. Sadchikova EV, Mokrushin VS. Interaction of 3,8-disubstituted imidazo-[5,1-C][1,2,4]triazines with nucleophiles. Chem Heterocycl Comp. 2014;50:1014–20. DOI: 10.1007/s10593-014-1557-5

20. Sadchikova EV. Synthesis of new azolo[5,1-d][1,2,3,5]tetrazin-4-ones – analogs of antitumor agent temozolomide. Russ Chem Bull. 2016; 65:1867–72. DOI: 10.1007/s11172-016-1522-9

21. Liu L, Mu LM, Yan Y, Wu JS, Hu YJ, Bu YZ, Zhang JY, Liu R, Li XQ, Lu WL. The use of functional epirubicin liposomes to induce programmed death in refractory breast cancer. Int J Nanomedicine. 2017;12:4163–76. DOI: 10.2147/IJN.S133194

22. Al-Humairi AH, Speransky DL, Sadchikova EV. Synthesis and Cytotoxic Activity of New Azolotriazines Studied on Cell Cultures. Pharmaceutical Chemistry Journal. 2022;56(6):17–22. DOI: 10.1007/s11094-022-02704-0. Russian

23. Iorns E, Drews-Elger K, Ward TM, Dean S, Clarke J, Berry D, El Ashry D, Lippman M. A new mouse model for the study of human breast cancer metastasis. PLoS ONE. 2012;7(10):47995. DOI: 10.1371/journal.pone.0047995

24. Dai X, Cheng H, Bai Z, Li J. Breast cancer cell line classification and its relevance with breast tumor subtyping. J Cancer. 2017;8(16):3131–41. DOI: 10.7150/jca.18457

25. Clegg J, Koch MK, Thompson EW, Haupt LM, Kalita-de Croft P, Bray LJ. Three-dimensional models as a new frontier for studying the role of proteoglycans in the normal and malignant breast microenvironment. Front Cell Dev Biol. 2020;8:569454. DOI: 10.3389/fcell.2020.569454

26. Yan S, Yue S. Identification of early diagnostic biomarkers for breast cancer through bioinformatics analysis. Medicine (Baltimore). 2023;102(37):e35273. DOI: 10.1097/MD.0000000000035273

27. Ahani Z, Nikbin M, Maghsoodlou MF, Farhadi-Ghalati F, Valizadeh J, Beyzaei H, Moghaddam-Manesh M. Semi-synthesis, antibacterial and antifungal activities of three novel thiazolidin-4-one by essential oil of Anethum graveolens seeds as starting material. JIRAN Chem Soc. 2018;15:2423–30. DOI: 10.1007/s13738-018-1431-y

28. Horishny V, Mandzyuk L, Lytvyn R, Bodnarchuk OV, Matiychuk VS, Obushak MD. Synthesis and biological activity of pyrazolo[1,5-c][1,3]benzoxazines containing a tiazolidin-4-one fragment. Russ J Org Chem. 2020;56(4):588–95. DOI: 10.1134/S1070428020040053

29. Sousa CRS, Miranda-Vilela AL, de Almeida MC, Fernandes JMS, Sebben A, Chaves SB, Magalhães KG, da Silva CR, de Paula Rôlo JLJ, Lucci CM, Lacava ZGM. Experimental orthotopic breast cancer as a model for investigation of mechanisms in malignancy and metastasis to the lymph nodes. Int J Vet Sci Res. 2019;5(2):46–57. DOI: 10.17352/ijvsr.000041

30. Khodadadi A, Faghih-Mirzaei E, Karimi-Maleh H, Abbaspourrad A, Agarwal S, Gupta VK. A new epirubicin biosensor based on amplifying DNA interactions with polypyrrole and nitrogen-doped reduced graphene: experimental and docking theoretical investigations. Sensors and Actuators B: Chem. 2019;284:568–74. DOI: 10.1016/j.snb.2018.12.164

31. Sztanke K, Pasternak K, Rzymowska J, Sztanke M, Kandefer-Szerszeń M. Synthesis, structure elucidation and identification of antitumoural properties of novel fused 1,2,4-triazine aryl derivatives. Eur J Med Chem. 2008;43(5):1085–94. DOI: 10.1016/j.ejmech.2007.07.009

32. Wang X, Luo N, Xu Z, Zheng X, Huang B, Pan X. The estrogenic proliferative effects of two alkylphenols and a preliminary mechanism exploration in MCF-7 breast cancer cells. Environ Toxicol. 2020;35(5):628–38. DOI: 10.1002/tox.22898

33. Carranza-Torres IE, Guzmán-Delgado NE, Coronado-Martínez C, Bañuelos-García JI, Viveros-Valdez E, Morán-Martínez J, Carranza-Rosales P. Organotypic culture of breast tumor explants as a multicellular system for the screening of natural compounds with antineoplastic potential. Biomed Res Int. 2015;2015:618021. DOI: 10.1155/2015/618021

34. Carranza-Rosales P, Guzmán-Delgado NE, Carranza-Torres IE, Viveros-Valdez E, Morán-Martínez J. Breast organotypic cancer models. Curr Top Microbiol Immunol. 2018; 86:1–25. DOI: 10.1007/82_2018_86


Review

For citations:


Al-Humairi A.H., Speransky D.L., Novochadov V.V., Poroisky S.V., Cherdyntseva N.V., Udut V.V. Antitumor activity of three new azoloazine derivatives in orthotopic transplantation model of human breast cancer cells into mice. Pharmacy & Pharmacology. 2023;11(4):291-300. https://doi.org/10.19163/2307-9266-2023-11-4-291-300

Views: 319


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2307-9266 (Print)
ISSN 2413-2241 (Online)