Studying the possibilities of pharmacological correction of hypoxia-induced pulmonary hypertension using a phenolic compound with a laboratory cypher KUD975
https://doi.org/10.19163/2307-9266-2023-11-4-312-323
Abstract
The aim of our work was to study a pharmacological activity of a selective arginase-2 and thrombin inhibitor from a phenolic compounds group with a laboratory cypher KUD975 on a model of arterial pulmonary hypertension induced by hypoxia.
Materials and methods. To simulate pulmonary hypertension (РН), animals were placed in a normobaric hypoxic chamber and subjected to 5 weeks of hypoxia with an oxygen content of 10% in the air. After 3 weeks of hypoxia, the animals were administered with the test compound KUD975 (intragastrically, at a dose of 2 mg/kg once a day for 2 weeks). L-norvaline (intragastrically, 20 mg/kg) was used as a reference drug. To assess the development and correction of РН, measurements of cardiohemodynamics, analysis of blood gas composition, study of the number of circulating endothelial precursor cells (EPCs), quantitative PCR assessing the expression of mRNA VEGF-R2, SGF-1 (stromal growth factor-1) and MCP-1 (monocyte chemoattractant protein-1). Next, a histological examination of the lungs and heart was performed, the degree of pulmonary edema and the concentration of cardiotrophin-1 and atrial natriuretic peptide were assessed.
Results. The administration of the studied phenolic compound with laboratory cypher KUD975, as well as the reference drug L-norvaline, led to a decrease in the right ventricular systolic pressure against the background of modeling РН. The present study shows a more than twice-fold decrease in the number of circulating (EPCs) in the animals group with modeling a hypoxia-induced circulatory РН (171.3±12.1) in comparison with the group of intact animals (296.1±31.7; p=0.0018). The recovery of EPCs was noted in the animals group administered with KUD-975 and L-norvaline, up to 247.5±34.2 (p=0.0009 compared with a pulmonary arterial hypertension (PAH) and 235.6±36.4 (p=0.008 compared to PAH), respectively. The studied compounds had a protective effect by statistically significantly increasing the expression of VEGF-R2 mRNA and decreasing the expression of SGF-1 mRNA, reducing the lung moisture coefficient and the concentrations of cardiotrophin-1 and atrial natriuretic peptide and preventing vascular remodeling caused by hypoxia.
Conclusion. When studying the pharmacological activity, it was shown that the phenolic compound with the laboratory cypher KUD975 normalizes hemodynamic parameters, reduces the signs of remodeling of the heart and pulmonary vessels and has a pronounced endothelial protective effect on the model of hypoxia-induced РН, and is superior to the activity of the reference drug L-norvaline.
Keywords
About the Author
L. V. KorokinaRussian Federation
Candidate of Sciences (Medicine), Associate Professor of the Department of Pharmacology and Clinical Pharmacology of Belgorod State National Research University.
85, Pobeda Str., Belgorod, Russia, 308015
References
1. Bousseau S, Sobrano Fais R, Gu S, Frump A, Lahm T. Pathophysiology and new advances in pulmonary hypertension. BMJ Med. 2023;2(1):e000137. DOI: 10.1136/bmjmed-2022-000137
2. Shah AJ, Beckmann T, Vorla M, Kalra DK. New drugs and therapies in pulmonary arterial hypertension. Int J Mol Sci. 2023;24(6):5850. DOI: 10.3390/ijms24065850
3. Humbert M, Kovacs G, Hoeper MM, Badagliacca R, Berger RMF, Brida M, Carlsen J, Coats AJS, Escribano-Subias P, Ferrari P, Ferreira DS, Ghofrani HA, Giannakoulas G, Kiely DG, Mayer E, Meszaros G, Nagavci B, Olsson KM, Pepke-Zaba J, Quint JK, Rådegran G, Simonneau G, Sitbon O, Tonia T, Toshner M, Vachiery JL, Vonk Noordegraaf A, Delcroix M, Rosenkranz S; ESC/ERS Scientific Document Group. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Heart J. 2022;43(38):3618–731. DOI: 10.1093/eurheartj/ehac237. Erratum in: Eur Heart J. 2023;44(15):1312.
4. Hoeper MM, Mayer E, Simonneau G, Rubin LJ. Chronic thromboembolic pulmonary hypertension. Circulation. 2006;113(16):2011–20. DOI: 10.1161/CIRCULATIONAHA.105.602565
5. Swisher JW, Weaver E. The evolving management and treatment options for patients with pulmonary hypertension: current evidence and challenges. Vasc Health Risk Manag. 2023;19:103–26. DOI: 10.2147/VHRM.S321025
6. Simonneau G, Montani D, Celermajer DS, Denton CP, Gatzoulis MA, Krowka M, Williams PG, Souza R. Haemodynamic definitions and updated clinical classification of pulmonary hypertension. Eur Respir J. 2019;53(1):1801913. DOI: 10.1183/13993003.01913-2018
7. Zolty R. Novel experimental therapies for treatment of pulmonary arterial hypertension. J Exp Pharmacol. 2021;13:817–57. DOI: 10.2147/JEP.S236743
8. Ball MK, Waypa GB, Mungai PT, Nielsen JM, Czech L, Dudley VJ, Beussink L, Dettman RW, Berkelhamer SK, Steinhorn RH, Shah SJ, Schumacker PT. Regulation of hypoxia-induced pulmonary hypertension by vascular smooth muscle hypoxia-inducible factor-1α. Am J Respir Crit Care Med. 2014;189(3):314–24. DOI: 10.1164/rccm.201302-0302OC
9. Khemani E, McElhinney DB, Rhein L, Andrade O, Lacro RV, Thomas KC, Mullen MP. Pulmonary artery hypertension in formerly premature infants with bronchopulmonary dysplasia: clinical features and outcomes in the surfactant era. Pediatrics. 2007;120(6):1260–9. DOI: 10.1542/peds.2007-0971
10. Kim GB. Pulmonary hypertension in infants with bronchopulmonary dysplasia. Korean J Pediatr. 2010;53(6):688–93. DOI: 10.3345/kjp.2010.53.6.688
11. Samillan V, Haider T, Vogel J, Leuenberger C, Brock M, Schwarzwald C, Gassmann M, Ostergaard L. Combination of erythropoietin and sildenafil can effectively attenuate hypoxia-induced pulmonary hypertension in mice. Pulm Circ. 2013;3(4):898–907. DOI: 10.1086/674758
12. Gilinsky MA, Polityko YK, Markel AL, Latysheva TV, Samson AO, Polis B, Naumenko SE. Norvaline reduces blood pressure and induces diuresis in rats with inherited stress-induced arterial hypertension. Biomed Res Int. 2020;2020:4935386. DOI: 10.1155/2020/4935386
13. Pokrovskiy MV, Korokin MV, Tsepeleva SA, Pokrovskaya TG, Gureev VV, Konovalova EA, Gudyrev OS, Kochkarov VI, Korokina LV, Dudina EN, Babko AV, Terehova EG. Arginase inhibitor in the pharmacological correction of endothelial dysfunction. Int J Hypertens. 2011;2011:515047. DOI: 10.4061/2011/515047
14. Gudyrev OS, Faitelson AV, Sobolev MS, Pokrovskiy MV, Pokrovskaya TG, Korokin MV, Povetka EE, Miller ES, Soldatov VO. A study of osteoprotective effect of l-arginine, l-norvaline and rosuvastatin on a model of hypoestrogen-induced osteoporosis in rats. I.P. Pavlov Russian Medical Biological Herald. 2019;27(3):325–32. DOI: 10.23888/PAVLOVJ2019273325-332
15. Kudryavtsev KV, Korokin MV, Yakushev VI. Study the effect of compound of phenolic nature on the formation of blood clots using intravital microscopy and fluorescent labels. Research result: pharmacology and clinical pharmacology. 2015;1(4(6)):4–8. DOI: 10.18413/2313-8971-2015-1-4-4-8
16. YanYun P, Wang S, Yang J, Chen B, Sun Z, Ye L, Zhu J, Wang X. Interruption of CD40 pathway improves efficacy of transplanted endothelial progenitor cells in monocrotaline induced pulmonary arterial hypertension. Cell Physiol Biochem. 2015;36(2):683–96. DOI: 10.1159/000430130
17. Caldwell RB, Toque HA, Narayanan SP, Caldwell RW. Arginase: an old enzyme with new tricks. Trends Pharmacol Sci. 2015;36(6):395–405. DOI: 10.1016/j.tips.2015.03.006
18. Kossmann S, Schwenk M, Hausding M, Karbach SH, Schmidgen MI, Brandt M, Knorr M, Hu H, Kröller-Schön S, Schönfelder T, Grabbe S, Oelze M, Daiber A, Münzel T, Becker C, Wenzel P. Angiotensin II-induced vascular dysfunction depends on interferon-γ-driven immune cell recruitment and mutual activation of monocytes and NK-cells. Arterioscler Thromb Vasc Biol. 2013;33(6):1313–9. DOI: 10.1161/ATVBAHA.113.301437. Erratum in: Arterioscler Thromb Vasc Biol. 2013;33(8):e126.
19. Wang L, Bhatta A, Toque HA, Rojas M, Yao L, Xu Z, Patel C, Caldwell RB, Caldwell RW. Arginase inhibition enhances angiogenesis in endothelial cells exposed to hypoxia. Microvasc Res. 2015;98:1–8. DOI: 10.1016/j.mvr.2014.11.002
20. Kavalukas SL, Uzgare AR, Bivalacqua TJ, Barbul A. Arginase inhibition promotes wound healing in mice. Surgery. 2012;151(2):287–95. DOI: 10.1016/j.surg.2011.07.012
21. Statsenko ME, Derevianchenko MV. Correction of endothelial dysfunction in hypertensive patients with type 2 diabetes mellitus during combined antihypertensive therapy. Terapevticheskii Arkhiv. 2014;86(8):90–3. Russian
22. Shcheblykin DV, Bolgov AA, Pokrovskii MV, Stepenko JV, Tsuverkalova JM, Shcheblykina OV, Golubinskaya PA, Korokina LV. Endothelial dysfunction: developmental mechanisms and therapeutic strategies. Research Results in Pharmacology. 2022;8(4):115–39. DOI: 10.3897/rrpharmacology.8.80376
23. Dehghani T, Panitch A. Endothelial cells, neutrophils and platelets: getting to the bottom of an inflammatory triangle. Open Biol. 2020;10(10):200161. DOI: 10.1098/rsob.200161
24. De Pablo-Moreno JA, Serrano LJ, Revuelta L, Sánchez MJ, Liras A. The vascular endothelium and coagulation: homeostasis, disease, and treatment, with a focus on the von willebrand factor and factors VIII and V. Int J Mol Sci. 2022;23(15):8283. DOI: 10.3390/ijms23158283
25. Rabiet MJ, Plantier JL, Dejana E. Thrombin-induced endothelial cell dysfunction. Br Med Bull. 1994;50(4):936–45. DOI: 10.1093/oxfordjournals.bmb.a072935
26. Lundberg JO, Weitzberg E. Nitric oxide signaling in health and disease. Cell. 2022;185(16):2853–78. DOI: 10.1016/j.cell.2022.06.010
27. Mahdi A, Kövamees O, Pernow J. Improvement in endothelial function in cardiovascular disease – Is arginase the target? Int J Cardiol. 2020;301:207–14. DOI: 10.1016/j.ijcard.2019.11.004
28. Lokteva TI, Rozhkov IS, Gureev VV, Gureeva AV, Zatolokina MA, Avdeeva EV, Zhilinkova LA, Prohoda EE, Yarceva EO. Correction of morphofunctional disorders of the cardiovascular system with asialized erythropoietin and arginase II selective inhibitors KUD 974 and KUD 259 in experimental preeclampsia. Research Results in Pharmacology. 2020;6(1):29–40. DOI: 10.3897/rrpharmacology.6.50851
29. Naito H, Iba T, Takakura N. Mechanisms of new blood-vessel formation and proliferative heterogeneity of endothelial cells. Int Immunol. 2020;32(5):295–305. DOI: 10.1093/intimm/dxaa008
30. Peng B, Kong G, Yang C, Ming Y. Erythropoietin and its derivatives: from tissue protection to immune regulation. Cell Death Dis. 2020;11(2):79. DOI: 10.1038/s41419-020-2276-8
31. Guo HJ, Jiang F, Chen C, Shi JY, Zhao YW. Plasma brain natriuretic peptide, platelet parameters, and cardiopulmonary function in chronic obstructive pulmonary disease. World J Clin Cases. 2021;9(36):11165–72. DOI: 10.12998/wjcc.v9.i36.11165
Review
For citations:
Korokina L.V. Studying the possibilities of pharmacological correction of hypoxia-induced pulmonary hypertension using a phenolic compound with a laboratory cypher KUD975. Pharmacy & Pharmacology. 2023;11(4):312-323. https://doi.org/10.19163/2307-9266-2023-11-4-312-323