Spiramycin: The past and future of an antibiotic with pleiotropic effects in the therapy of community-acquired infections
https://doi.org/10.19163/2307-9266-2024-12-2-150-171
Abstract
The aim of the work was to search and analyze works on pharmacokinetic (PK) and pharmacodynamic (PD) parameters of spiramycin, allowing to evaluate the potential of this macrolide in the therapy of community-acquired infections.
Materials and мethods. The abstract databases of PubMed, Google Scholar, EMBASE, the ResearchGate scientific information network and elibrary.ru were used to search for the materials. The following key queries were used in the work: “pharmacokinetics of spiramycin”, “pharmacokinetic parameters of spiramycin”, “pharmacodynamics of spiramycin”, “mechanism of action of spiramycin”, “targets for spiramycin”, “pharmacodynamic effects of spiramycin”. The search depth – 69 years (1955–2024), the total number of publications included in the literature review in the areas of “pharmacokinetics” and “pharmacodynamics” was 72. The total number of the sources used in the article amounted is 152.
Results. With the spread of the antibiotic resistance (AR) among the pathogens of both nosocomial and community-acquired infections, it is important for physician to search for strategies to preserve the possibility of using first-line antibacterial drugs (ABDs) in patients with infectious diseases. Spiramycin has been characterized by a minimal consumption by the population in the last decades, thus, it has a potential for the therapy of infectious diseases. The analysis of the PK spiramycin parameters indicates the ability to form effective concentrations in various tissues and organs, as well as a minimal risk of drug interactions that can alter the therapeutic response. The evaluation of its antibacterial activity in vitro and in vivo yields different results, indicating the ability of the drug to exhibit significantly greater efficacy in vivo. This paradox may be based on pleiotropic effects of spiramycin involving both host cells (immunomodulatory and anti-inflammatory effects, the ability to favorably affect the tissue regeneration, the antitumor activity, the inhibition of adipogenesis) and pathogen targets (the ability to reduce the virulence of P. aerugenosa, the antiviral effect, the reduction of the adhesion ability of cocci).
Conclusion. The PK and PD parameters and the properties of spiramycin along with the results of the published clinical studies evaluating its efficacy indicate that, despite its lower in vitro activity, the presence of additional pleiotropic effects may be the key to its superiority over the traditional macrolides in in vivo methods.
Keywords
About the Authors
O. I. ButranovaRussian Federation
Candidate of Sciences (Medicine), Associated Professor of the Department of General and Clinical Pharmacology of the Medical Institute of Peoples’ Friendship University of Russia named after Patrice Lumumba.
6 Miklukho-Maklay Str., Moscow, Russia, 117198
S. K. Zyryanov
Russian Federation
Doctor of Sciences (Medicine), professor, the Head of the Department of General and Clinical Pharmacology of the Medical Institute of Peoples’ Friendship University of Russia named after Patrice Lumumba; deputy Chief Medical Officer of Municipal Clinical Hospital No. 24 of the Moscow City Health Department.
6 Miklukho-Maklay Str., Moscow, Russia, 117198.
10 Pistsovaya Str., Moscow, Russia, 127015
A. A. Abramova
Russian Federation
postgraduate student of the Department of General and Clinical Pharmacology of the Medical Institute of Peoples’ Friendship University of Russia named after Patrice Lumumba.
6 Miklukho-Maklay Str., Moscow, Russia, 117198
References
1. Hutchings MI, Truman AW, Wilkinson B. Antibiotics: past, present and future. Curr Opin Microbiol. 2019;51:72–80. DOI: 10.1016/j.mib.2019.10.008
2. Uddin TM, Chakraborty AJ, Khusro A, Zidan BRM, Mitra S, Emran TB, Dhama K, Ripon MKH, Gajdács M, Sahibzada MUK, Hossain MJ, Koirala N. Antibiotic resistance in microbes: History, mechanisms, therapeutic strategies and future prospects. J Infect Public Health. 2021;14(12):1750–1766. DOI: 10.1016/j.jiph.2021.10.020
3. Zahari NIN, Engku Abd Rahman ENS, Irekeola AA, Ahmed N, Rabaan AA, Alotaibi J, Alqahtani SA, Halawi MY, Alamri IA, Almogbel MS, Alfaraj AH, Ibrahim FA, Almaghaslah M, Alissa M, Yean CY. A Review of the Resistance Mechanisms for β-Lactams, Macrolides and Fluoroquinolones among Streptococcus pneumoniae. Medicina (Kaunas). 2023;59(11):1927. DOI: 10.3390/medicina59111927
4. Gupta V, Yu KC, Schranz J, Gelone SP. A Multicenter Evaluation of the US Prevalence and Regional Variation in Macrolide-Resistant S. pneumoniae in Ambulatory and Hospitalized Adult Patients in the United States. Open Forum Infect Dis. 2021;8(7):ofab063. DOI: 10.1093/ofid/ofab063
5. Gergova R, Boyanov V, Muhtarova A, Alexandrova A. A Review of the Impact of Streptococcal Infections and Antimicrobial Resistance on Human Health. Antibiotics (Basel). 2024;13(4):360. DOI: 10.3390/antibiotics13040360
6. Alexandrova A, Pencheva D, Setchanova L, Gergova R. Association of pili with widespread multidrug-resistant genetic lineages of non-invasive pediatric Streptococcus pneumoniae isolates. Acta Microbiol Immunol. Hung. 2022;69:177–184. DOI: 10.1556/030.2022.01816
7. Okada T, Sato Y, Toyonaga Y, Hanaki H, Sunakawa K. Nationwide survey of Streptococcus pneumoniae drug resistance in the pediatric field in Japan. Pediatr Int. 2016;58:192–201. DOI: 10.1111/ped.12781
8. Fu J, Yi R, Jiang Y, Xu S, Qin P, Liang Z, Chen J. Serotype distribution and antimicrobial resistance of Streptococcus pneumoniae causing invasive diseases in China: A meta-analysis. BMC Pediatr. 2019;19:424. DOI: 10.1186/s12887-019-1722-1
9. Zhou X, Liu J, Zhang Z, Cui B, Wang Y, Zhang Y, Xu H, Cheng G, Liu Y, Qin X. Characterization of Streptococcus pneumoniae Macrolide Resistance and Its Mechanism in Northeast China over a 20-Year Period. Microbiol Spectr. 2022;10(5):e0054622. DOI: 10.1128/spectrum.00546-22
10. Mohammadi Gharibani K, Azami A, Parvizi M, Khademi F, Mousavi SF, Arzanlou M. High Frequency of Macrolide-Resistant Streptococcus pneumoniae Colonization in Respiratory Tract of Healthy Children in Ardabil, Iran. Tanaffos. 2019;18(2):118–125.
11. Ivanchik NV, Chagaryan АN, Sukhorukova МV, Kozlov RS, Dekhnich АV, Krechikova ОI, Vinogradova АG, Kuzmenkov АYu, Trushin IV, Sivaya ОV, Muravyev АА, Strebkova VV, Kochneva NА, Amineva PG, Ishakova LМ, Dik NG, Morozova ОА, Lazareva АV, Chernyavskaya YuL, Kirillova GSh, Bekker GG, Popova LD, Elokhina ЕV, Zubareva NА, Moskvitina ЕN, Petrova ТА, Zholobova АF, Gudkova LV, Khokhlyavin RL, Burasova ЕB, Kholodok GN, Panina ОА, Ershova МG. Antimicrobial resistance of clinical Streptococcus pneumoniae isolates in Russia: the results of multicenter epidemiological study «PEHASus 2014–2017». Clinical Microbiology and Antimicrobial Chemotherapy. 2019;21(3):230–237. DOI: 10.36488/cmac.2019.3.230-237
12. Berbel D, González-Díaz A, López de Egea G, Càmara J, Ardanuy C. An Overview of Macrolide Resistance in Streptococci: Prevalence, Mobile Elements and Dynamics. Microorganisms. 2022;10(12):2316. DOI: 10.3390/microorganisms10122316
13. Stetsyuk OU, Andreeva IV, Egorova OA. Antibiotic resistance of the main ENT pathogens. RMJ Medical Review. 2019;9(II):78–83.
14. Guo DX, Hu WJ, Wei R, Wang H, Xu BP, Zhou W, Ma SJ, Huang H, Qin XG, Jiang Y, Dong XP, Fu XY, Shi DW, Wang LY, Shen AD, Xin DL. Epidemiology and mechanism of drug resistance of Mycoplasma pneumoniae in Beijing, China: A multicenter study. Bosn J Basic Med Sci. 2019;19(3):288–296. DOI: 10.17305/bjbms.2019.4053
15. Loconsole D, De Robertis AL, Sallustio A, Centrone F, Morcavallo C, Campanella S, Accogli M, Chironna M. Update on the Epidemiology of Macrolide-Resistant Mycoplasma pneumoniae in Europe: A Systematic Review. Infect Dis Rep. 2021;13(3):811–820. DOI: 10.3390/idr13030073
16. Molan A, Nosaka K, Hunter M, Wang W. Global status of Toxoplasma gondii infection: systematic review and prevalence snapshots. Trop Biomed. 2019;36(4):898–925.
17. Khabisi SA, Almasi SZ, Zadeh SL. Seroprevalence and Risk Factors Associated with Toxoplasma gondii Infection in the Population Referred to Rural and Urban Health Care Centers in Zahedan, Primary Referral Level, in Southeastern Iran. J Parasitol Res. 2022;2022:7311905. DOI: 10.1155/2022/7311905
18. Yu CP, Chen BC, Chou YC, Hsieh CJ, Lin FH. The epidemiology of patients with toxoplasmosis and its associated risk factors in Taiwan during the 2007-2020 period. PLoS One. 2023;18(8):e0290769. DOI: 10.1371/journal.pone.0290769
19. Montazeri M, Mehrzadi S, Sharif M, Sarvi S, Tanzifi A, Aghayan SA, Daryani A. Drug Resistance in Toxoplasma gondii. Front Microbiol. 2018;9:2587. DOI: 10.3389/fmicb.2018.02587
20. Adriaenssens N, Bruyndonckx R, Versporten A, Hens N, Monnet DL, Molenberghs G, Goossens H, Weist K, Coenen S; ESAC-Net study group. Consumption of macrolides, lincosamides and streptogramins in the community, European Union/European Economic Area, 1997–2017. J Antimicrob Chemother. 2021;76(12 Suppl 2):ii30–ii36. DOI: 10.1093/jac/dkab175
21. Karnoukh KI, Lazareva NB. Analysis of the antibiotic consumption on the backdrop of the COVID-19 pandemic: hospital level. Medical Council. 2021;(16):118–128. DOI: 10.21518/2079-701X-2021-16-118-128
22. Zakharenkov IA, Rachina SA, Kozlov RS, Belkova YuA. Consumption of systemic antibiotics in the Russian Federation in 2017–2021. Clinical Microbiology and Antimicrobial Chemotherapy. 2022;24(3):220–225. DOI: 10.36488/cmac.2022.3.220-225
23. Calcagnile M, Bettini S, Damiano F, Talà A, Tredici SM, Pagano R, Di Salvo M, Siculella L, Fico D, De Benedetto GE, Valli L, Alifano P. Stimulatory Effects of Methyl-β-cyclodextrin on Spiramycin Production and Physical-Chemical Characterization of Nonhost@Guest Complexes. ACS Omega. 2018;3(3):2470–2478. DOI: 10.1021/acsomega.7b01766
24. Vacek V. Spiramycin [Spiramycin]. Cas Lek Cesk. 1994;133(2):56–60. Czech
25. Arsic B, Barber J, Čikoš A, Mladenovic M, Stankovic N, Novak P. 16-membered macrolide antibiotics: a review. Int J Antimicrob Agents. 2018;51(3):283–298. DOI: 10.1016/j.ijantimicag.2017.05.020
26. Breiner-Goldstein E, Eyal Z, Matzov D, Halfon Y, Cimicata G, Baum M, Rokney A, Ezernitchi AV, Lowell AN, Schmidt JJ, Rozenberg H, Zimmerman E, Bashan A, Valinsky L, Anzai Y, Sherman DH, Yonath A. Ribosome-binding and anti-microbial studies of the mycinamicins, 16-membered macrolide antibiotics from Micromonospora griseorubida. Nucleic Acids Res. 2021;49(16):9560-9573. DOI: 10.1093/nar/gkab684
27. Yakovlev SV, Suvorova МР. The Renaissance of Spiramycin in Clinical Practice. Antibiotics and Chemotherapy. 2023;68(7–8):83–89. DOI: 10.37489/0235-2990-2023-68-7-8-83-89
28. Butranova OI, Ushkalova EA, Zyryanov SK, Chenkurov MS, Baybulatova EA. Pharmacokinetics of Antibacterial Agents in the Elderly: The Body of Evidence. Biomedicines. 2023;11(6):1633. DOI: 10.3390/biomedicines11061633
29. Butranova OI, Ushkalova EA, Zyryanov SK, Chenkurov MS. Developmental Pharmacokinetics of Antibiotics Used in Neonatal ICU: Focus on Preterm Infants. Biomedicines. 2023;11(3):940. DOI: 10.3390/biomedicines11030940
30. Baietto L, Corcione S, Pacini G, Perri GD, D’Avolio A, De Rosa FG. A 30-years review on pharmacokinetics of antibiotics: is the right time for pharmacogenetics? Curr Drug Metab. 2014;15(6):581–98. DOI: 10.2174/1389200215666140605130935
31. Nielsen EI, Cars O, Friberg LE. Pharmacokinetic/pharmacodynamic (PK/PD) indices of antibiotics predicted by a semimechanistic PKPD model: a step toward model-based dose optimization. Antimicrob Agents Chemother. 2011;55(10):4619–4630. DOI: 10.1128/AAC.00182-11
32. Fuursted K, Knudsen JD, Petersen MB, Poulsen RL, Rehm D. Comparative study of bactericidal activities, postantibiotic effects, and effects of bacterial virulence of penicillin G and six macrolides against Streptococcus pneumoniae. Antimicrob Agents Chemother. 1997;41(4):781–84. DOI: 10.1128/AAC.41.4.781
33. Wang L, Zhang Y. Postantibiotic effects and postantibiotic sub-MIC effects of tilmicosin, erythromycin and tiamulin on erythromycin-resistant Streptococcus suis. Braz J Microbiol. 2009;40(4):980–987. DOI: 10.1590/S1517-838220090004000033
34. Odenholt-Tornqvist I, Löwdin E, Cars O. Postantibiotic effects and postantibiotic sub-MIC effects of roxithromycin, clarithromycin, and azithromycin on respiratory tract pathogens. Antimicrob Agents Chemother. 1995;39(1):221–226. DOI: 10.1128/AAC.39.1.221
35. Kricker JA, Page CP, Gardarsson FR, Baldursson O, Gudjonsson T, Parnham MJ. Nonantimicrobial Actions of Macrolides: Overview and Perspectives for Future Development. Pharmacol Rev. 2021;73(4):233–262. DOI: 10.1124/pharmrev.121.000300
36. Pollock J, Chalmers JD. The immunomodulatory effects of macrolide antibiotics in respiratory disease. Pulm Pharmacol Ther. 2021;71:102095. DOI: 10.1016/j.pupt.2021.102095
37. Zarogoulidis P, Papanas N, Kioumis I, Chatzaki E, Maltezos E, Zarogoulidis K. Macrolides: from in vitro anti-inflammatory and immunomodulatory properties to clinical practice in respiratory diseases. Eur J Clin Pharmacol. 2012;68(5):479–503. DOI: 10.1007/s00228-011-1161-x
38. Culić O, Eraković V, Parnham MJ. Anti-inflammatory effects of macrolide antibiotics. Eur J Pharmacol. 2001;429(1–3):209–229. DOI: 10.1016/s0014-2999(01)01321-8
39. Cao X, Du X, Jiao H, An Q, Chen R, Fang P, Wang J, Yu B. Carbohydrate-based drugs launched during 2000-2021. Acta Pharm Sin B. 2022;12(10):3783–3821. DOI: 10.1016/j.apsb.2022.05.020
40. Zhang X, Wu X, Xie F, Wang Z, Zhang X, Jiang L. Physicochemical Properties and In Vitro Dissolution of Spiramycin Microparticles Using the Homogenate-Antisolvent Precipitation Process. Applied Sciences. 2017;7(1):10. DOI: 10.3390/app7010010
41. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001;46(1–3):3–26. DOI: 10.1016/s0169-409x(00)00129-0
42. Matsson P, Doak BC, Over B, Kihlberg J. Cell permeability beyond the rule of 5. Adv Drug Deliv Rev. 2016;101:42–61. DOI: 10.1016/j.addr.2016.03.013
43. Danelius E, Poongavanam V, Peintner S, Wieske LHE, Erdélyi M, Kihlberg J. Solution Conformations Explain the Chameleonic Behaviour of Macrocyclic Drugs. Chemistry. 2020;26(23):5231–5244. DOI: 10.1002/chem.201905599
44. Erckes V, Steuer C. A story of peptides, lipophilicity and chromatography – back and forth in time. RSC Med Chem. 2022;13(6):676–687. DOI: 10.1039/d2md00027j
45. Wieske LHE, Atilaw Y, Poongavanam V, Erdélyi M, Kihlberg J. Going Viral: An Investigation into the Chameleonic Behaviour of Antiviral Compounds. Chemistry. 2023;29(8):e202202798. DOI: 10.1002/chem.202202798
46. Padovan J, Ralić J, Letfus V, Milić A, Bencetić Mihaljević V. Investigating the barriers to bioavailability of macrolide antibiotics in the rat. Eur J Drug Metab Pharmacokinet. 2012;37(3):163–171. DOI: 10.1007/s13318-011-0074-5
47. Doak BC, Over B, Giordanetto F, Kihlberg J. Oral druggable space beyond the rule of 5: insights from drugs and clinical candidates. Chem Biol. 2014;21(9):1115–1142. DOI: 10.1016/j.chembiol.2014.08.013
48. Peters DH, Friedel HA, McTavish D. Azithromycin. A review of its antimicrobial activity, pharmacokinetic properties and clinical efficacy. Drugs. 1992;44(5):750–799. DOI: 10.2165/00003495-199244050-00007
49. Foulds G, Shepard RM, Johnson RB. The pharmacokinetics of azithromycin in human serum and tissues. J Antimicrob Chemother. 1990;25 Suppl A:73–82. DOI: 10.1093/jac/25.suppl_a.73
50. Chabbert, Y. Etudes in vitro sur la spiramycine; activité, résistance, antibiogramme, concentrations humorales [In vitro studies on spiramycin; activity, resistance, antibiogram, humoral concentrations]. Ann Inst Pasteur (Paris). 1955;89(4):434–446. French
51. Frydman AM, Le Roux Y, Desnottes JF, Kaplan P, Djebbar F, Cournot A, Duchier J, Gaillot J. Pharmacokinetics of spiramycin in man. J Antimicrob Chemother. 1988;22 Suppl B:93–103. DOI: 10.1093/jac/22.supplement_b.93
52. Hamilton-Miller JM. In-vitro activities of 14-, 15- and 16-membered macrolides against gram-positive cocci. J Antimicrob Chemother. 1992;29(2):141–147. DOI: 10.1093/jac/29.2.141
53. Desnottes JF, Diallo N, Moret G. Effect of spiramycin on adhesiveness and phagocytosis of gram-positive cocci. J Antimicrob Chemother. 1988;22 Suppl B:25–32. DOI: 10.1093/jac/22.supplement_b.25
54. Ridgway GL, Mumtaz G, Fenelon L. The in-vitro activity of clarithromycin and other macrolides against the type strain of Chlamydia pneumoniae (TWAR). J Antimicrob Chemother. 1991;27 Suppl A:43–45. DOI: 10.1093/jac/27.suppl_a.43
55. Webster C, Ghazanfar K, Slack R. Sub-inhibitory and post-antibiotic effects of spiramycin and erythromycin on Staphylococcus aureus. J Antimicrob Chemother. 1988;22 Suppl B:33–39. DOI: 10.1093/jac/22.supplement_b.33
56. Chavanet P, Portier H. Traitement des angines aiguës [Treatment of acute pharyngitis]. Rev Prat. 1992;42(3):303–307.
57. Yagiz Aghayarov O, Bayar Muluk N, Vejselova Sezer C, Kutlu HM, Cingi C. Evaluation of spiramycin for topical applications: a cell culture study. Eur Rev Med Pharmacol Sci. 2023;27(2 Suppl):44–50. DOI: 10.26355/eurrev_202303_31701
58. Rubinstein E, Keller N. Spiramycin renaissance. J Antimicrob Chemother. 1998;42(5):572–576. DOI: 10.1093/jac/42.5.572
59. Chan TS, Scaringella YS, Raymond K, Taub ME. Evaluation of Erythromycin as a Tool to Assess CYP3A Contribution of Low Clearance Compounds in a Long-Term Hepatocyte Culture. Drug Metab Dispos. 2020;48(8):690–697. DOI: 10.1124/dmd.120.090951
60. Akiyoshi T, Ito M, Murase S, Miyazaki M, Guengerich FP, Nakamura K, Yamamoto K, Ohtani H. Mechanism-based inhibition profiles of erythromycin and clarithromycin with cytochrome P450 3A4 genetic variants. Drug Metab Pharmacokinet. 2013;28(5):411–415. DOI: 10.2133/dmpk.dmpk-12-rg-134
61. Krasniqi S, Matzneller P, Kinzig M, Sorgel F, Huttner S, Lackner E, Muller M, Zeitlinger M. Blood, tissue, and intracellular concentrations of erythromycin and its metabolite anhydroerythromycin during and after therapy. Antimicrob Agents Chemother. 2012;56(2):1059–1064. DOI: 10.1128/AAC.05490-11
62. Fohner AE, Sparreboom A, Altman RB, Klein TE. PharmGKB summary: Macrolide antibiotic pathway, pharmacokinetics/pharmacodynamics. Pharmacogenet Genomics. 2017;27(4):164–167. DOI: 10.1097/FPC.0000000000000270
63. Glanzer S, Pulido SA, Tutz S, Wagner GE, Kriechbaum M, Gubensäk N, Trifunovic J, Dorn M, Fabian WM, Novak P, Reidl J, Zangger K. Structural and functional implications of the interaction between macrolide antibiotics and bile acids. Chemistry. 2015;21(11):4350–4358. DOI: 10.1002/chem.201406413
64. Lenz KD, Klosterman KE, Mukundan H, Kubicek- Sutherland JZ. Macrolides: From Toxins to Therapeutics. Toxins (Basel). 2021;13(5):347. DOI: 10.3390/toxins13050347
65. Fassbender M, Lode H, Schiller C, Andro R, Goetschi B, Borner K, Koeppe P. Comparative pharmacokinetics of macrolide antibiotics and concentrations achieved in polymorphonuclear leukocytes and saliva. Clin Microbiol Infect. 1996;1(4):235–243. DOI: 10.1016/s1198-743x(15)60281-6
66. Eberl S, Renner B, Neubert A, Reisig M, Bachmakov I, König J, Dörje F, Mürdter TE, Ackermann A, Dormann H, Gassmann KG, Hahn EG, Zierhut S, Brune K, Fromm MF. Role of p-glycoprotein inhibition for drug interactions: evidence from in vitro and pharmacoepidemiological studies. Clin Pharmacokinet. 2007;46(12):1039–1049. DOI: 10.2165/00003088-200746120-00004
67. Puri SK, Lassman HB. Roxithromycin: a pharmacokinetic review of a macrolide. J Antimicrob Chemother. 1987;20 Suppl B:89–100. DOI: 10.1093/jac/20.suppl_b.89
68. Yamazaki H, Shimada T: Comparative studies of in vitro inhibition of cytochrome P450 3A4-dependent testosterone 6beta-hydroxylation by roxithromycin and its metabolites, troleandomycin, and erythromycin. Drug Metab Dispos. 1998;26(11):1053–1057.
69. Singlas E. [Clinical pharmacokinetics of azithromycin]. Pathol Biol (Paris). 1995;43(6):505–511.
70. Skinner M, Kanfer I. Comparative bioavailability of josamycin, a macrolide antibiotic, from a tablet and solution and the influence of dissolution on in vivo release. Biopharm Drug Dispos. 1998;19(1):21–29. DOI: 10.1002/(sici)1099-081x(199801)19:1<21::aid-bdd69>3.0.co;2-g
71. Brook I. Pharmacodynamics and pharmacokinetics of spiramycin and their clinical significance. Clin Pharmacokinet. 1998;34(4):303–310. DOI: 10.2165/00003088-199834040-00003
72. Vázquez-Laslop N, Mankin AS. How Macrolide Antibiotics Work. Trends Biochem Sci. 2018;43(9):668–684. DOI: 10.1016/j.tibs.2018.06.011
73. Kannan K, Vázquez-Laslop N, Mankin AS. Selective protein synthesis by ribosomes with a drug-obstructed exit tunnel. Cell. 2012;151(3):508–520. DOI: 10.1016/j.cell.2012.09.018
74. Aleksandrova EV, Ma CX, Klepacki D, Alizadeh F, Vázquez-Laslop N, Liang JH, Polikanov YS, Mankin AS. Macrolones target bacterial ribosomes and DNA gyrase and can evade resistance mechanisms. Nat Chem Biol. 2024. DOI: 10.1038/s41589-024-01685-3
75. Credito KL, Ednie LM, Jacobs MR, Appelbaum PC. Activity of telithromycin (HMR 3647) against anaerobic bacteria compared to those of eight other agents by time-kill methodology. Antimicrob Agents Chemother. 1999;43(8):2027–2031. DOI: 10.1128/AAC.43.8.2027
76. Svetlov MS, Vázquez-Laslop N, Mankin AS. Kinetics of drug-ribosome interactions defines the cidality of macrolide antibiotics. Proc Natl Acad Sci U S A. 2017;114(52):13673–13678. DOI: 10.1073/pnas.1717168115
77. Lewis JS 2nd, Jorgensen JH. Inducible clindamycin resistance in Staphylococci: should clinicians and microbiologists be concerned? Clin Infect Dis. 2005;40(2):280–285. DOI: 10.1086/426894
78. Pernodet JL, Alegre MT, Blondelet-Rouault MH, Guérineau M. Resistance to spiramycin in Streptomyces ambofaciens, the producer organism, involves at least two different mechanisms. J Gen Microbiol. 1993;139(5):1003–11. DOI: 10.1099/00221287-139-5-1003
79. Davoodi S, Daryaee F, Chang A, Walker SG, Tonge PJ. Correlating Drug-Target Residence Time and Post-antibiotic Effect: Insight into Target Vulnerability. ACS Infect Dis. 2020;6(4):629–636. DOI: 10.1021/acsinfecdis.9b00484
80. Kamme C, Kahlmeter G, Melander A. Evaluation of spiramycin as a therapeutic agent for elimination of nasopharyngeal pathogens. Possible use of spiramycin for middle ear infections and for gonococcal and meningococcal nasopharyngeal carriage. Scand J Infect Dis. 1978;10(2):135–142. DOI: 10.3109/inf.1978.10.issue-2.07
81. Kavi J, Webberley JM, Andrews JM, Wise R. A comparison of the pharmacokinetics and tissue penetration of spiramycin and erythromycin. J Antimicrob Chemother. 1988;22:105–10. DOI: 10.1093/jac/22.Supplement_B.105
82. Elazab ST, Elshater NS, Hashem YH, Al-Atfeehy NM, Lee EB, Park SC, Hsu WH. Pharmacokinetic/Pharmacodynamic Modeling of Spiramycin against Mycoplasma synoviae in Chickens. Pathogens. 2021;10(10):1238. DOI: 10.3390/pathogens10101238
83. Brisson-Noël A, Trieu-Cuot P, Courvalin P. Mechanism of action of spiramycin and other macrolides. J Antimicrob Chemother. 1988;22 Suppl B:13–23. DOI: 10.1093/jac/22.supplement_b.13
84. Pedra-Rezende Y, Macedo IS, Midlej V, Mariante RM, Menna-Barreto RFS. Different Drugs, Same End: Ultrastructural Hallmarks of Autophagy in Pathogenic Protozoa. Front Microbiol. 2022;13:856686. DOI: 10.3389/fmicb.2022.856686
85. Carbon C. Pharmacodynamics of macrolides, azalides, and streptogramins: effect on extracellular pathogens. Clin Infect Dis. 1998;27(1):28–32. DOI: 10.1086/514619
86. Calcagnile M, Alifano P. Off-Target Activity of Spiramycin Disarms Pseudomonas aeruginosa by Inhibition of Biofilm Formation, Pigment Production and Phenotypic Differentiation. Medical Sciences Forum. 2022;12(1):42. DOI: 10.3390/eca2022-12723
87. Calcagnile M, Jeguirim I, Tredici SM, Damiano F, Alifano P. Spiramycin Disarms Pseudomonas aeruginosa without Inhibiting Growth. Antibiotics (Basel). 2023;12(3):499. DOI: 10.3390/antibiotics12030499
88. Smith CR. The spiramycin paradox. J Antimicrob Chemother. 1988;22 Suppl B:141–144. DOI: 10.1093/jac/22.supplement_b.141
89. Poddighe D, Aljofan M. Clinical evidences on the antiviral properties of macrolide antibiotics in the COVID-19 era and beyond. Antivir Chem Chemother. 2020;28:2040206620961712. DOI: 10.1177/2040206620961712
90. Sugamata R, Sugawara A, Nagao T, Suzuki K, Hirose T, Yamamoto K, Oshima M, Kobayashi K, Sunazuka T, Akagawa KS, Ōmura S, Nakayama T, Suzuki K. Leucomycin A3, a 16-membered macrolide antibiotic, inhibits influenza A virus infection and disease progression. J Antibiot (Tokyo). 2014;67(3):213–222. DOI: 10.1038/ja.2013.132
91. Zeng S, Meng X, Huang Q, Lei N, Zeng L, Jiang X, Guo X. Spiramycin and azithromycin, safe for administration to children, exert antiviral activity against enterovirus A71 in vitro and in vivo. Int J Antimicrob Agents. 2019;53(4):362–369. DOI: 10.1016/j.ijantimicag.2018
92. Hagras NA, Mogahed NMFH, Sheta E, Darwish AA, El-Hawary MA, Hamed MT, Elwakil BH. The powerful synergistic effect of spiramycin/propolis loaded chitosan/alginate nanoparticles on acute murine toxoplasmosis. PLoS Negl Trop Dis. 2022;16(3):e0010268. DOI: 10.1371/journal.pntd.0010268
93. Allam AF, Hagras NA, Farag HF, Osman MM, Shalaby TI, Kazem AH, Shehab AY, Mogahed NMFH. Remarkable histopathological improvement of experimental toxoplasmosis after receiving spiramycin-chitosan nanoparticles formulation. J Parasit Dis. 2022;46(1):166–177. DOI: 10.1007/s12639-021-01431-9
94. Hagras NA, Allam AF, Farag HF, Osman MM, Shalaby TI, Fawzy Hussein Mogahed NM, Tolba MM, Shehab AY. Successful treatment of acute experimental toxoplasmosis by spiramycin-loaded chitosan nanoparticles. Exp Parasitol. 2019;204:107717. DOI: 10.1016/j.exppara.2019.107717
95. Abdel-Wahab AA, Shafey DA, Selim SM, Sharaf SA, Mohsen KK, Allam DM, Elkhadry SW, Gouda MA. Spiramycin-loaded maltodextrin nanoparticles as a promising treatment of toxoplasmosis on murine model. Parasitol Res. 2024;123(7):286. DOI: 10.1007/s00436-024-08280-4
96. El Saftawy EA, Turkistani SA, Alghabban HM, Albadawi EA, Ibrahim BE, Morsy S, Farag MF, Al Hariry NS, Shash RY, Elkazaz A, Amin NM. Effects of Lactobacilli acidophilus and/or spiramycin as an adjunct in toxoplasmosis infection challenged with diabetes. Food Waterborne Parasitol. 2023;32:e00201. DOI: 10.1016/j.fawpar.2023.e00201
97. Kim MO, Ryu HW, Choi JH, Son TH, Oh SR, Lee HS, Yuk HJ, Cho S, Kang JS, Lee CW, Lee J, Lee CK, Hong ST, Lee SU. Anti-Obesity Effects of Spiramycin In Vitro and In Vivo. PLoS One. 2016;11(7):e0158632. DOI: 10.1371/journal.pone.0158632
98. Kenyon C, Laumen J, Manoharan-Basil SS, Buyze J. Strong association between adolescent obesity and consumption of macrolides in Europe and the USA: An ecological study. J Infect Public Health. 2020;13(10):1517–1521. DOI: 10.1016/j.jiph.2020.06.024
99. Ternák G, Németh M, Rozanovic M, Márovics G, Bogár L. “Growth-Promoting Effect” of Antibiotic Use Could Explain the Global Obesity Pandemic: A European Survey. Antibiotics (Basel). 2022;11(10):1321. DOI: 10.3390/antibiotics11101321
100. Reijnders TDY, Saris A, Schultz MJ, van der Poll T. Immunomodulation by macrolides: therapeutic potential for critical care. Lancet Respir Med. 2020;8(6):619–630. DOI: 10.1016/S2213-2600(20)30080-1
101. Pons S, Arrii E, Arnaud M, Loiselle M, Ferry J, Nouacer M, Lion J, Cohen S, Mooney N, Zafrani L. Immunomodulation of endothelial cells induced by macrolide therapy in a model of septic stimulation. Immun Inflamm Dis. 2021;9(4):1656–1669. DOI: 10.1002/iid3.518
102. Kang JK, Kang HK, Hyun CG. Anti-Inflammatory Effects of Spiramycin in LPS-Activated RAW 264.7 Macrophages. Molecules. 2022;27(10):3202. DOI: 10.3390/molecules27103202
103. Kanoh S, Rubin BK. Mechanisms of action and clinical application of macrolides as immunomodulatory medications. Clin Microbiol Rev. 2010;23(3):590–615. DOI: 10.1128/CMR.00078-09
104. Parnham MJ, Erakovic Haber V, Giamarellos-Bourboulis EJ, Perletti G, Verleden GM, Vos R. Azithromycin: mechanisms of action and their relevance for clinical applications. Pharmacol Ther. 2014;143(2):225–245. DOI: 10.1016/j.pharmthera.2014.03.003
105. Pohl K, Grimm XA, Caceres SM, Poch KR, Rysavy N, Saavedra M, Nick JA, Malcolm KC. Mycobacterium abscessus Clearance by Neutrophils Is Independent of Autophagy. Infect Immun. 2020;88(8):e00024–20. DOI: 10.1128/IAI.00024-20
106. Kawamoto Y, Morinaga Y, Kaku N, Uno N, Kosai K, Sakamoto K, Hasegawa H, Yanagihara K. A novel macrolide, solithromycin suppresses mucin overexpression induced by Pseudomonas aeruginosa LPS in airway epithelial cells. J Infect Chemother. 2020;26(9):1008–1010. DOI: 10.1016/j.jiac.2020.06.014
107. Imamura Y, Yanagihara K, Mizuta Y, Seki M, Ohno H, Higashiyama Y, Miyazaki Y, Tsukamoto K, Hirakata Y, Tomono K, Kadota J, Kohno S. Azithromycin inhibits MUC5AC production induced by the Pseudomonas aeruginosa autoinducer N-(3-Oxododecanoyl) homoserine lactone in NCI-H292 Cells. Antimicrob Agents Chemother. 2004;48(9):3457–3461. DOI: 10.1128/AAC.48.9.3457-3461.2004
108. Tominaga K. The emerging role of senescent cells in tissue homeostasis and pathophysiology. Pathobiol Aging Age Relat Dis. 2015;5:27743. DOI: 10.3402/pba.v5.27743
109. Ozsvari B, Nuttall JR, Sotgia F, Lisanti MP. Azithromycin and Roxithromycin define a new family of “senolytic” drugs that target senescent human fibroblasts. Aging (Albany NY). 2018;10(11):3294–3307. DOI: 10.18632/aging.101633
110. Farouk F, Elmaaty AA, Elkamhawy A, Tawfik HO, Alnajjar R, Abourehab MAS, Saleh MA, Eldehna WM, Al-Karmalawy AA. Investigating the potential anticancer activities of antibiotics as topoisomerase II inhibitors and DNA intercalators: in vitro, molecular docking, molecular dynamics, and SAR studies. J Enzyme Inhib Med Chem. 2023;38(1):2171029. DOI: 10.1080/14756366.2023.2171029
111. Bunnag C, Jareoncharsri P, Voraprayoon S, Vitavasiri A, Supatchaipisit P, Kongpatanakul S. Efficacy of spiramycin as an alternative to amoxicillin in the treatment of acute upper respiratory tract infections. Clin Drug Investig. 1998;15(6):461–466. DOI: 10.2165/00044011-199815060-00001
112. Rocha RT, Awad CE, Ali A, Matyas R, Vital AC, Silva CO, Dainesi SM, Salazar MS, Nakatani J. Comparison of spiramycin and clarithromycin for community-acquired lower respiratory tract infections. Int J Clin Pract. 1999;53(6):433–436.
113. Bocheńska-Marciniak M, Kupryś I, Krzywiecki A, Sliwowski A, Kuna P. Clinical efficacy and safety of spiramycin and clarithromycin in the treatment of outpatients with lower respiratory tract infections. Pol Arch Med Wewn. 1998;100(3):222–235.
114. Strachunskiĭ LS, Sudilovskaia NN, Melikhov OG. Rovamitsin (spiramitsin)--makrolidnyĭ antibiotik dlia vnutrivennogo vvedeniia: opyt lecheniia pnevmonii [Rovamycin (spiramycin)--a macrolide antibiotic for intravenous administration: a trial in the treatment of pneumonia]. Ter Arkh. 1995;67(3):7–11. Russian
115. Gel’tser BI, Rubashek IA, Semisotova EF, Kramar AV. Makrolidnyĭ antibiotik rovamitsin pri lechenii pnevmoniĭ [The macrolide antibiotic rovamycin in the treatment of pneumonias]. Ter Arkh. 1996;68(12):22–5. Russian
116. Strachunskiĭ LS, Sudilovskaia NN, Shiriaeva NV, Nechaeva NB. Spiramitsin (rovamitsin)--makrolidnyĭ antibiotik dlia peroral’noĭ terapii vnebol’nichnykh pnevmoniĭ [Spiramycin (rovamycin), a macrolide antibiotic for oral treatment of outpatient pneumonia]. Klin Med (Mosk). 1995;73(2):45–8. Russian
117. Otsiians EN, Rziankina MF, D’iachenko VG, Suleĭmanov SSh, Zakharova EI, Bachaldina OM. Primenenie spiramitsina pri lechenii vospalitel’nykh zabolevaniĭ dykhatel’nykh puteĭ u deteĭ v ambulatornykh usloviiakh [Use of spiramycin in the treatment of inflammatory diseases ot the respiratory tract in children in ambulatory conditions]. Antibiot Khimioter. 1998;43(11):34–7. Russian
118. Rotzetter PA, Le Liboux A, Pichard E, Cimasoni G. Kinetics of spiramycin/metronidazole (Rodogyl) in human gingival crevicular fluid, saliva and blood. J Clin Periodontol. 1994;21(9):595–600. DOI: 10.1111/j.1600-051x.1994.tb00749.x
119. Rams TE, Dujardin S, Sautter JD, Degener JE, van Winkelhoff AJ. Spiramycin resistance in human periodontitis microbiota. Anaerobe. 2011;17(4):201–205. DOI: 10.1016/j.anaerobe.2011.03.017
120. Poulet PP, Duffaut D, Barthet P, Brumpt I. Concentrations and in vivo antibacterial activity of spiramycin and metronidazole in patients with periodontitis treated with high-dose metronidazole and the spiramycin/metronidazole combination. J Antimicrob Chemother. 2005;55(3):347–351. DOI: 10.1093/jac/dki013
121. Kocsmár É, Buzás GM, Szirtes I, Kocsmár I, Kramer Z, Szijártó A, Fadgyas-Freyler P, Szénás K, Rugge M, Fassan M, Kiss A, Schaff Z, Röst G, Lotz G. Primary and secondary clarithromycin resistance in Helicobacter pylori and mathematical modeling of the role of macrolides. Nat Commun. 2021;12(1):2255. DOI: 10.1038/s41467-021-22557-7
122. Mégraud F, Graham DY, Howden CW, Trevino E, Weissfeld A, Hunt B, Smith N, Leifke E, Chey WD. Rates of Antimicrobial Resistance in Helicobacter pylori Isolates From Clinical Trial Patients Across the US and Europe. Am J Gastroenterol. 2023;118(2):269–275. DOI: 10.14309/ajg.0000000000002045
123. Perfilova KM, Butina TYu, Neumoina NV, Shutova IV, Kuznetsova IA, Troshina TA, Shmakova TV, Levina SN. Macrolide resistance of H.pylori due to ermB gene during H. pylori infection in real practice. Opera Medica et Physiologica. 2024;11(2):129–138. DOI: 10.24412/2500-2295-2024-2-129-138
124. Berstad A, Berstad K, Wilhelmsen I, Hatlebakk JG, Nesje LB, Hausken T. Spiramycin in triple therapy of Helicobacter pylori-associated peptic ulcer disease. An open pilot study with 12-month follow-up. Aliment Pharmocol Ther. 1995;9(2):197–200. DOI: 10.1111/j.1365-2036.1995.tb00371.x
125. Olafsson S, Berstad A, Bang CJ, Nysaeter G, Coll P, Tefera S, Hatlebakk JG, Hausken T, Olafsson T. Spiramycin is comparable to oxytetracycline in eradicating H. pylori when given with ranitidine bismuth citrate and metronidazole. Aliment Pharmacol Ther. 1999;13(5):651–659. DOI: 10.1046/j.1365-2036.1999.00517
126. Kalach N, Raymond J, Benhamou PH, Bergeret M, Senouci L, Gendrel D, Dupont C. Spiramycin as an alternative to amoxicillin treatment associated with lansoprazole/metronidazole for Helicobacter pylori infection in children. Eur J Pediatr. 1998;157(7):607–608. DOI: 10.1007/s004310050891
127. Telaku S, Islamaj E, Veliu A, Bytyqi J, Telaku M, Fejza H, Alidema F. The Efficacy of Spiramycin-based Triple Therapy for First-Line Helicobacter Pylori Eradication. Pharmakeftiki. 2023;35(4):64–70. DOI: 10.60988/pj.v35i4.28
128. Mikhailova V.V., Lobova T.P., Shishkina M.S., Skvortsova A.N., Zyuzgina S.V., Zinovieva O.E. Review of the epizootic situation on chlamydia in animals and birds in the Russian Federation for the period from 2019 to 2021. Agrarian science. 2024;(3):57–61. DOI: 10.32634/0869-8155-2024-380-3-57-61
129. Fesolowicz S, Kwiatkowski A, Wszola M, Podsiadly E, Ostrowski K, Durlik M, Paczek L, Tylewska-Wierzbanowska S, Rowinski W, Chmura A. Chlamydia pneumoniae infection in patients after kidney transplantation treated with spiramycin. Transplant Proc. 2009;41(1):167–169. DOI: 10.1016/j.transproceed.2008.09.062
130. Dylewski J, Clecner B, Dubois J, St-Pierre C, Murray G, Bouchard C, Phillips R. Comparison of spiramycin and doxycycline for treatment of Chlamydia trachomatis genital infections. Antimicrob Agents Chemother. 1993;37(6):1373–1374. DOI: 10.1128/AAC.37.6.1373.
131. Sreiri N, Ben Abdallah Y, Belfeki N, Klopfenstein T, Zayet S. Chlamydia psittaci-related pleuro-myocarditis. Braz J Infect Dis. 2024;28(2):103739. DOI: 10.1016/j.bjid.2024.103739
132. Gomes Ferrari Strang AG, Ferrar RG, Falavigna- Guilherme AL. Gestational toxoplasmosis treatment changes the child’s prognosis: A cohort study in southern Brazil. PLoS Negl Trop Dis. 2023;17(9):e0011544. DOI: 10.1371/journal.pntd.0011544
133. Briciu V, Ionică AM, Flonta M, Almaș A, Muntean M, Topan A, Horvat M, Ungureanu L, Lupșe M. Toxoplasmosis Screening during Pregnancy in a Romanian Infectious Diseases Tertiary Center: Results of a 15 Years Follow-Up Program. Microorganisms. 2023;11(9):2189. DOI: 10.3390/microorganisms11092189
134. Schneider MO, Faschingbauer F, Kagan KO, Groß U, Enders M, Kehl S; AGG Section Maternal Diseases. Toxoplasma gondii Infection in Pregnancy –Recommendations of the Working Group on Obstetrics and Prenatal Medicine (AGG – Section on Maternal Disorders). Geburtshilfe Frauenheilkd. 2023;83(12):1431–1445. DOI: 10.1055/a-2111-7394
135. Avci ME, Arslan F, Çiftçi Ş, Ekiz A, Tüten A, Yildirim G, Madazli R. Role of spiramycin in prevention of fetal toxoplasmosis. J Matern Fetal Neonatal Med. 2016;29(13):2073–2076. DOI: 10.3109/14767058.2015.1074998
136. Felín MS, Wang K, Moreira A, Grose A, Leahy K, Zhou Y, Clouser FA, Siddiqui M, Leong N, Goodall P, Michalowski M, Ismail M, Christmas M, Schrantz S, Caballero Z, Norero X, Estripeaut D, Ellis D, Raggi C, Castro C, Moossazadeh D, Ramirez M, Pandey A, Ashi K, Dovgin S, Dixon A, Li X, Begeman I, Heichman S, Lykins J, Villalobos-Cerrud D, Fabrega L, Montalvo JLS, Mendivil C, Quijada MR, Fernández-Pirla S, de La Guardia V, Wong D, de Guevara ML, Flores C, Borace J, García A, Caballero N, Rengifo-Herrera C, de Saez MTM, Politis M, Wroblewski K, Karrison T, Ross S, Dogra M, Dhamsania V, Graves N, Kirchberg M, Mathur K, Aue A, Restrepo CM, Llanes A, Guzman G, Rebellon A, Boyer K, Heydemann P, Noble AG, Swisher C, Rabiah P, Withers S, Hull T, Su C, Blair M, Latkany P, Mui E, Vasconcelos-Santos DV, Villareal A, Perez A, Galvis CAN, Montes MV, Perez NIC, Ramirez M, Chittenden C, Wang E, Garcia-López LL, Muñoz-Ortiz J, Rivera-Valdivia N, Bohorquez-Granados MC, de-la-Torre GC, Padrieu G, Hernandez JDV, Celis-Giraldo D, Dávila JAA, Torres E, Oquendo MM, Arteaga-Rivera JY, Nicolae DL, Rzhetsky A, Roizen N, Stillwaggon E, Sawers L, Peyron F, Wallon M, Chapey E, Levigne P, Charter C, De Frias M, Montoya J, Press C, Ramirez R, Contopoulos-Ioannidis D, Maldonado Y, Liesenfeld O, Gomez C, Wheeler K, Holfels E, Frim D, McLone D, Penn R, Cohen W, Zehar S, McAuley J, Limonne D, Houze S, Abraham S, Piarroux R, Tesic V, Beavis K, Abeleda A, Sautter M, El Mansouri B, El Bachir A, Amarir F, El Bissati K, de-la-Torre A, Britton G, Motta J, Ortega-Barria E, Romero IL, Meier P, Grigg M, Gómez-Marín J, Kosagisharaf JR, Llorens XS, Reyes O, McLeod R. Building Programs to Eradicate Toxoplasmosis Part I: Introduction and Overview. Curr Pediatr Rep. 2022;10(3):57–92. DOI: 10.1007/s40124-022-00269-w
137. Felín MS, Wang K, Moreira A, Grose A, Leahy K, Zhou Y, Clouser FA, Siddiqui M, Leong N, Goodall P, Michalowski M, Ismail M, Christmas M, Schrantz S, Caballero Z, Norero X, Estripeaut D, Ellis D, Raggi C, Castro C, Moossazadeh D, Ramirez M, Pandey A, Ashi K, Dovgin S, Dixon A, Li X, Begeman I, Heichman S, Lykins J, Villalobos-Cerrud D, Fabrega L, Montalvo JLS, Mendivil C, Quijada MR, Fernández-Pirla S, de La Guardia V, Wong D, de Guevara ML, Flores C, Borace J, García A, Caballero N, Rengifo-Herrera C, de Saez MTM, Politis M, Ross S, Dogra M, Dhamsania V, Graves N, Kirchberg M, Mathur K, Aue A, Restrepo CM, Llanes A, Guzman G, Rebellon A, Boyer K, Heydemann P, Noble AG, Swisher C, Rabiah P, Withers S, Hull T, Frim D, McLone D, Su C, Blair M, Latkany P, Mui E, Vasconcelos-Santos DV, Villareal A, Perez A, Galvis CAN, Montes MV, Perez NIC, Ramirez M, Chittenden C, Wang E, Garcia-López LL, Padrieu G, Muñoz-Ortiz J, Rivera-Valdivia N, Bohorquez-Granados MC, de-la-Torre GC, Hernandez JDV, Celis-Giraldo D, Dávila JAA, Torres E, Oquendo MM, Arteaga-Rivera JY, Nicolae DL, Rzhetsky A, Roizen N, Stillwaggon E, Sawers L, Peyron F, Wallon M, Chapey E, Levigne P, Charter C, De Frias M, Montoya J, Press C, Ramirez R, Contopoulos-Ioannidis D, Maldonado Y, Liesenfeld O, Gomez C, Wheeler K, Zehar S, McAuley J, Limonne D, Houze S, Abraham S, Piarroux R, Tesic V, Beavis K, Abeleda A, Sautter M, El Mansouri B, El Bachir A, Amarir F, El Bissati K, Holfels E, Frim D, McLone D, Penn R, Cohen W, de-la-Torre A, Britton G, Motta J, Ortega-Barria E, Romero IL, Meier P, Grigg M, Gómez-Marín J, Kosagisharaf JR, Llorens XS, Reyes O, McLeod R. Building Programs to Eradicate Toxoplasmosis Part IV: Understanding and Development of Public Health Strategies and Advances “Take a Village”. Curr Pediatr Rep. 2022;10(3):125–154. DOI: 10.1007/s40124-022-00268-x
138. Wei HX, Wei SS, Lindsay DS, Peng HJ. A Systematic Review and Meta-Analysis of the Efficacy of Anti-Toxoplasma gondii Medicines in Humans. PLoS One. 2015;10(9):e0138204. DOI: 10.1371/journal.pone.0138204
139. Montoya JG, Laessig K, Fazeli MS, Siliman G, Yoon SS, Drake-Shanahan E, Zhu C, Akbary A, McLeod R. A fresh look at the role of spiramycin in preventing a neglected disease: meta-analyses of observational studies. Eur J Med Res. 2021;26(1):143. DOI: 10.1186/s40001-021-00606-7
140. Valentini P, Buonsenso D, Barone G, Serranti D, Calzedda R, Ceccarelli M, Speziale D, Ricci R, Masini L. Spiramycin/cotrimoxazole versus pyrimethamine/sulfonamide and spiramycin alone for the treatment of toxoplasmosis in pregnancy. J Perinatol. 2015;35(2):90–94. DOI: 10.1038/jp.2014.161
141. Hotop A, Hlobil H, Gross U. Efficacy of rapid treatment initiation following primary Toxoplasma gondii infection during pregnancy. Clin Infect Dis. 2012;54(11):1545–1552. DOI: 10.1093/cid/cis234
142. Hansen MP, Scott AM, McCullough A, Thorning S, Aronson JK, Beller EM, Glasziou PP, Hoffmann TC, Clark J, Del Mar CB. Adverse events in people taking macrolide antibiotics versus placebo for any indication. Cochrane Database Syst Rev. 2019;1(1):CD011825. DOI: 10.1002/14651858.CD011825.pub2
143. You C, Zhang Y, Xu Y, Xu P, Li Z, Li H, Huang S, Chen Z, Li J, Xu HE, Jiang Y. Structural basis for motilin and erythromycin recognition by motilin receptor. Sci Adv. 2023;9(11):eade9020. DOI: 10.1126/sciadv.ade9020
144. Itoh Z, Suzuki T, Nakaya M, Inoue M, Mitsuhashi S. Gastrointestinal motor-stimulating activity of macrolide antibiotics and analysis of their side effects on the canine gut. Antimicrob Agents Chemother. 1984;26(6):863–869. DOI: 10.1128/AAC.26.6.863
145. Shim SR, Lee Y, In SM, Lee KI, Kim I, Jeong H, Shin J, Kim JY. Increased risk of hearing loss associated with macrolide use: a systematic review and meta-analysis. Sci Rep. 2024;14(1):183. DOI: 10.1038/s41598-023-50774-1
146. Vanoverschelde A, Oosterloo BC, Ly NF, Ikram MA, Goedegebure A, Stricker BH, Lahousse L. Macrolide-associated ototoxicity: a cross-sectional and longitudinal study to assess the association of macrolide use with tinnitus and hearing loss. J Antimicrob Chemother. 2021;76(10):2708–2716. DOI: 10.1093/jac/dkab232
147. Wu Y, Bi WT, Qu LP, Fan J, Kong XJ, Ji CC, Chen XM, Yao FJ, Liu LJ, Cheng YJ, Wu SH. Administration of macrolide antibiotics increases cardiovascular risk. Front Cardiovasc Med. 2023;10:1117254. DOI: 10.3389/fcvm.2023
148. Ostroumova OD, Goloborodova IV. Drug-induced pirouette-type tachycardia. Farmateka. 2019;26(9):11–20. DOI: 10.18565/pharmateca.2019.9.11-20
149. Volberg WA, Koci BJ, Su W, Lin J, Zhou J. Blockade of human cardiac potassium channel human ether-a-go-go-related gene (HERG) by macrolide antibiotics. J Pharmacol Exp Ther. 2002;302(1):320–327. DOI: 10.1124/jpet.302.1.320.
150. Wang X, Pan Z, Wang J, Wang H, Fan H, Gong T, Sun Q, Feng Y, Liang P. Characterization of the molecular mechanisms underlying azithromycin-induced cardiotoxicity using human-induced pluripotent stem cell-derived cardiomyocytes. Clin Transl Med. 2021;11(9):e549. DOI: 10.1002/ctm2.549148
151. Prasil P, Sleha R, Kacerovsky M, Bostik P. Comparison of adverse reactions of spiramycin versus pyrimethamine/sulfadiazine treatment of toxoplasmosis in pregnancy: is spiramycin really the drug of choice for unproven infection of the fetus? J Matern Fetal Neonatal Med. 2023;36(1):2215377. DOI: 10.1080/14767058.2023.2215377
152. Descotes J, Vial T, Delattre D, Evreux JC. Spiramycin: safety in man. J Antimicrob Chemother. 1988;22 Suppl B:207–210. DOI: 10.1093/jac/22.supplement_b.207
Review
For citations:
Butranova O.I., Zyryanov S.K., Abramova A.A. Spiramycin: The past and future of an antibiotic with pleiotropic effects in the therapy of community-acquired infections. Pharmacy & Pharmacology. 2024;12(2):150-171. https://doi.org/10.19163/2307-9266-2024-12-2-150-171