Preview

Pharmacy & Pharmacology

Advanced search

Analysis of mitochondrial-targeted antioxidant SkQ1 effectiveness on myocardial ischemia-reperfusion injury in a rat model: Focus on morphological and ultrastructural tissue study

https://doi.org/10.19163/2307-9266-2024-12-3-219-230

Abstract

Mitochondrial-targeted antioxidant SkQ1 demonstrates a high efficiency in animal models and potentially can be used for minimizing postoperative complications in an on-pump open-heart surgery.

The aim of study was to the assessment of preservation degree and changes in the isolated rat heart characterized by prolonged cardioplegic ischemia, under the condition of donation of different SkQ1concentrations.

Material and methods. Isolated Langendorff-perfused rat hearts of Wistar line (n=15) were included in the presented study; the effectiveness of 12 ng/mL and 120 ng/mL of SkQ1 was analyzed. A biochemical analysis (superoxide dismutase 2 [SOD2], malondialdehyde [MDA], Troponin-I, heart-type fatty acid-binding protein [H-FABP]), a histological analysis of tissues (hematoxylin and eosin staining), scanning electron microscopy using backscattered electrons and immunofluorescence staining for cytochrome C and cytochrome P450 reductase were performed. The quantitative data were processed using GraphPad Prism 7 (Graph Pad Software, USA).

Results. The optimal myocardial preservation was discovered while using 12 ng/mL of SkQ1: the lowest concentrations of MDA (49.5 [41.1; 58.9] mmol/g), Troponin-I (22.3 [20.3; 23.9] pg/mL) and H-FABP (0.8 [0.6; 16.0] ng/mL) were associated with extensive areas of tissues with preserved transverse dark and light bands and a moderate interstitial edema. Moreover, non-deformed mitochondria were located mainly between the contractile fibers. Cytochrome C immunofluorescence was distributed locally, the luminescence intensity was 40% higher compared to the control group (p <0.0001). Increasing SkQ1 concentration to 120 ng/mL contributed to the aggravation of oxidative stress: MDA (63.8 [62.5; 83.0] mmol/g) and H-FABP (12.8 [4.1; 15.3] ng/mL) concentrations were closer to the control group values. Myocardial tissue in this group was characterized by a pronounced edema and a fragmentation of muscle fibers. There were signs of cardiomyocyte decay, myocytolysis and an intracellular edema. Cytochrome C was distributed evenly.

Conclusion. 12 ng/mL of SkQ1 demonstrates pronounced antioxidant effects in the ischemic myocardium leading to a higher degree preservation of the heart muscle compared to 120 ng/mL of SkQ1 that was associated with an aggravated oxidative stress and structural changes of the tissue.

About the Authors

E. A. Senokosova
Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation

Candidate of Sciences (Biology), Head of Laboratory of Cell Technologies, Laboratory of Cell Technologies, Research Institute for Complex Issues of Cardiovascular Diseases. 

6 Barbarash Blvd., Kemerovo, Russia, 650002



E. A. Velikanova
Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation

Candidate of Sciences (Biology), researcher of Laboratory of Cell Technologies, Research Institute for Complex Issues of Cardiovascular Diseases. 

6 Barbarash Blvd., Kemerovo, Russia, 650002



R. A. Mukhamadiyarov
Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation

Candidate of Sciences (Biology), senior researcher of Laboratory of Molecular, Translation and Digital Medicine, Research Institute for Complex Issues of Cardiovascular Diseases. 

6 Barbarash Blvd., Kemerovo, Russia, 650002



O. D. Sidorova
Kuzbass Medical College
Russian Federation

Candidate of Sciences (Medicine), lecturer, associate professor of Kuzbass Medical College. 

10 N. Ostrovskiy Str., Kemerovo, Russia, 650991



E. O. Krivkina
Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation

junior researcher of Laboratory of Cell Technologies, Research Institute for Complex Issues of Cardiovascular Diseases. 

6 Barbarash Blvd., Kemerovo, Russia, 650002



L. V. Antonova
Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation

Doctor of Sciences (Medicine), leading researcher of Research Institute for Complex Issues of Cardiovascular Diseases.

6 Barbarash Blvd., Kemerovo, Russia, 650002



E. V. Grigoriev
Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation

Doctor of Sciences (Medicine), Deputy Director for Scientific and Medical Work of Research Institute for Complex Issues of Cardiovascular Diseases; professor RAS. 

6 Barbarash Blvd., Kemerovo, Russia, 650002



References

1. Soeur J, Eilstein J, Lereaux G, Jones C. Marrot L. Skin resistance to oxidative stress induced by resveratrol: from Nrf2 activation to GSH biosynthesis. Free Radic. Biol. Med. 2015;78:213–23. DOI: 10.1016/j.freeradbiomed

2. Cadenas E, Davies KJ. Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med. 2000;29(3–4):222–30. DOI: 10.1016/s0891-5849(00)00317-8

3. Pisoschi AM, Pop A. The role of antioxidants in the chemistry of oxidative stress: A review. Eur J Med Chem. 2015;5(97):55–74. DOI: 10.1016/j.ejmech.2015.04.040

4. He L, He T, Farrar S, Ji L, Liu T, Ma X. Antioxidants Maintain Cellular Redox Homeostasis by Elimination of Reactive Oxygen Species. Cell Physiol Biochem. 2017;44(2):532–53. DOI: 10.1159/000485089

5. Zerres S, Stahl W. Carotenoids in human skin. Biochim Biophys Acta Mol Cell Biol Lipids. 2020;1865(11):158588. DOI: 10.1016/j.bbalip.2019.158588

6. Agati G, Azzarello E, Pollastri S, Tattini M. Flavonoids as antioxidants in plants: location and functional significance. Plant Sci. 2012;196:67–76. DOI: 10.1016/j.plantsci.2012.07.014

7. Grabowska M, Wawrzyniak D, Rolle K, Chomczynski P, Oziewicz S, Jurga S, Barciszewski J. Let food be your medicine: nutraceutical properties of lycopene. Food Funct. 2019;10(6):3090–102. DOI: 10.1039/c9fo00580c

8. Bhat I, Mamatha BS. Genetic factors involved in modulating lutein bioavailability. Nutr Res. 2021;91:36–43. DOI: 10.1016/j.nutres.2021.04.007

9. Berger MM. Can oxidative damage be treated nutritionally? Clin Nutr. 2005;24(2):172–83. DOI: 10.1016/j.clnu.2004.10.003

10. Lоpez-Alarcоn C, Denicola A. Evaluating the antioxidant capacity of natural products: a review on chemical and cellular-based assays. Anal Chim Acta. 2013;6(763):1–10. DOI: 10.1016/j.aca.2012.11.051

11. Kattoor AJ, Pothineni NVK, Palagiri D, Mehta JL. Oxidative Stress in Atherosclerosis. Curr Atheroscler Rep. 2017;19 (11):42. DOI: 10.1007/s11883-017-0678-6

12. Betteridge DJ. What is oxidative stress? Metabolism. 2000;49:3–8. DOI: 10.1016/s0026-0495(00)80077-3

13. Senoner T, Dichtl W. Oxidative Stress in Cardiovascular Diseases: Still a Therapeutic Target? Nutrients. 2019;11(9):2090. DOI: 10.3390/nu11092090

14. Bogdanov MV, Vorontsova NL, Matveeva VG, Golovkin АS, Larionov MV, Grigoriev EV. Dynamics of oxidative stress and endointoxication in coronary sinus and peripheral blood from patients coronary artery disease undergoing coronary artery bypass grafting. Complex Issues of Cardiovascular Diseases. 2013;(4):65–70. DOI: 10.17802/2306-1278-2013-4-65-70

15. Kura B, Szeiffova Bacova B, Kalocayova B, Sykora M, Slezak J. Oxidative Stress-Responsive MicroRNAs in Heart Injury. Int J Mol Sci. 2020;21(1):358. DOI: 10.3390/ijms21010358

16. Sponga S, Bonetti A, Ferrara V, Beltrami AP, Isola M, Vendramin I, Finato N, Ortolani F, Livi U. Preservation by cold storage vs ex vivo normothermic perfusion of marginal donor hearts: clinical, histopathologic, and ultrastructural features. J Heart Lung Transplant. 2020;39(12):1408–16. DOI: 10.1016/j.healun.2020.08.021

17. Liberman EA, Topaly VP, Tsofina LM, Jasaitis AA, Skulachev VP. Mechanism of coupling of oxidative phosphorylation and the membrane potential of mitochondria. Nature. 1969;222 (5198):1076–8. DOI: 10.1038/2221076a0

18. Skulachev VP. Cationic antioxidants as a powerful tool against mitochondrial oxidative stress. Biochem Biophys Res Commun. 2013;441(2):275–9. DOI: 10.1016/j.bbrc.2013.10.063

19. Skulachev MV, Antonenko YN, Anisimov VN, Chernyak BV, Cherepanov DA, Chistyakov VA, Egorov MV, Kolosova NG, Korshunova GA, Lyamzaev KG, Plotnikov EY, Roginsky VA, Savchenko AY, Severina II, Severin FF, Shkurat TP, Tashlitsky VN, Shidlovsky KM, Vyssokikh MY, Zamyatnin AA Jr, Zorov DB, Skulachev VP. Mitochondrial-targeted plastoquinone derivatives. Effect on senescence and acute age-related pathologies. Curr Drug Targets. 2011;12(6):800–26. DOI: 10.2174/138945011795528859

20. Antonenko YN, Roginsky VA, Pashkovskaya AA, Rokitskaya TI, Kotova EA, Zaspa AA, Chernyak BV, Skulachev VP. Protective effects of mitochondria-targeted antioxidant SkQ in aqueous and lipid membrane environments. J Membr Biol. 2008;222(3):141–9. DOI: 10.1007/s00232-008-9108-6

21. Anisimov VN, Egorov MV, Krasilshchikova MS, Lyamzaev KG, Manskikh VN, Moshkin MP, Novikov EA, Popovich IG, Rogovin KA, Shabalina IG, Shekarova ON, Skulachev MV, Titova TV, Vygodin VA, Vyssokikh MY, Yurova MN, Zabezhinsky MA, Skulachev VP. Effects of the mitochondria-targeted antioxidant SkQ1 on lifespan of rodents. Aging (Albany NY). 2011;3(11): 1110–9. DOI: 10.18632/aging.100404

22. Mizobuti DS, Fogaça AR, Moraes FDSR, Moraes LHR, Mаncio RD, Hermes TA, Macedo AB, Valduga AH, de Lourenсo CC, Pereira ECL, Minatel E. Coenzyme Q10 supplementation acts as antioxidant on dystrophic muscle cells. Cell Stress Chaperones. 2019;24(6):1175–85. DOI: 10.1007/s12192-019-01039-2

23. Bayrak S, Aktaş S, Altun Z, Çakir Y, Tütüncü M, Kum Özşengezer S, Yilmaz O, Olgun N. Antioxidant effect of acetyl-l-carnitine against cisplatin-induced cardiotoxicity. J Int Med Res. 2020;48(8):300060520951393. DOI: 10.1177/0300060520951393

24. Förstermann U, Xia N, Li H. Roles of vascular oxidative stress and nitric oxide in the pathogenesis of atherosclerosis. Circ Res. 2017;120(4):713–35. DOI: 10.1161/CIRCRESAHA.116.309326

25. Esterbauer H, Eckl P, Ortner A. Possible mutagens derived from lipids and lipid precursors. Mutat Res. 1990;238(3):223–33. DOI: 10.1016/0165-1110(90)90014-3

26. Esterbauer H, Schaur RJ, Zollner H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med. 1991;11(1):81–128. DOI: 10.1016/0891-5849(91)90192-6

27. Weismann D, Binder CJ. The innate immune response to products of phospholipid peroxidation. Biochim Biophys Acta. 2012;1818(10):2465–75. DOI: 10.1016/j.bbamem.2012.01.018

28. Liebetrau C, Nef HM, Dörr O, Gaede L, Hoffmann J, Hahnel A, Rolf A, Troidl C, Lackner KJ, Keller T, Hamm СW, Möllmann H. Release kinetics of early ischaemic biomarkers in a clinical model of acute myocardial infarction. Heart. 2014;100:652–7. DOI: 10.1136/heartjnl-2013-305253

29. Vupputuri A, Sekhar S, Krishnan S, Venugopal K, Natarajan KU. Heart-type fatty acid-binding protein (H-FABP) as an early diagnostic biomarker in patients with acute chest pain. Indian Heart J. 2015;67(6):538–42. DOI: 10.1016/j.ihj.2015.06.035

30. Collet JP, Thiele H, Barbato E, Barthelemy O, Bauersachs J, Bhatt DL, Dendale P, Dorobantu M, Edvardsen T, Folliguet T, Gale CP, Gilard M, Jobs A, Juni P, Lambrinou E, Lewis BS, Mehilli J, Meliga E, Merkely B, Mueller C, Roffi M, Rutten FH, Sibbing D, Siontis GCM; ESC Scientific Document Group. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur Heart J. 2021;42(14):1289–367. DOI: 10.1093/eurheartj/ehaa575

31. Li K, Li Y, Shelton JM, Richardson JA, Spencer E, Chen ZJ, Wang, X, Williams RS. Cytochrome c deficiency causes embryonic lethality and attenuates stress-induced apoptosis. Cell. 2000;101(4):389–99. DOI: 10.1016/s0092-8674(00)80849-1

32. Kulikov AV, Shilov ES, Mufazalov IA, Gogvadze V, Nedospasov SA, Zhivotovsky B. Cytochrome c: the Achilles’ heel in apoptosis. Cell Mol Life Sci. 2012;69(11):1787–97. DOI: 10.1007/s00018-011-0895-z

33. Strobel HW, Dignam JD, Gum JR. NADPH cytochrome P-450 reductase and its role in the mixed function oxidase reaction. Pharmacol Ther. 1980;8(3):525–37. DOI: 10.1016/0163-7258(80)90075-3

34. Olejnickova V, Novakova M, Provaznik I. Isolated heart models: cardiovascular system studies and technological advances. Med Biol Eng Comput. 2015;53(7):669–78. DOI: 10.1007/s11517-015-1270-2

35. Senokosova EA, Krutitskiy SS, Velikanova EA, Tsepokina AV, Kuzmina AA, Tretjak VM, Denisova SV, Gruzdeva OV, Antonova LV, Grigoriev EV. Ability of N(2)-L-alanyl-L-glutamine to restore the function of ischemic myocard. Complex Issues of Cardiovascular Diseases. 2017;(1):44–50. DOI: 10.17802/2306-1278-2017-1-44-50

36. Firsov AM, Kotova EA, Orlov VN, Antonenko YN, Skulachev VP. A mitochondria-targeted antioxidant can inhibit peroxidase activity of cytochrome c by detachment of the protein from liposomes. FEBS Lett. 2016;590(17):2836–43. DOI: 10.1002/1873-3468.12319

37. Bakeeva LE, Barskov IV, Egorov MV, Isaev NK, Kapelko VI, Kazachenko AV, Kirpatovsky VI, Kozlovsky SV, Lakomkin VL, Levina SB, Pisarenko OI, Plotnikov EY, Saprunova VB, Serebryakova LI, Skulachev MV, Stelmashook EV, Studneva IM, Tskitishvili OV, Vasilyeva AK, Victorov IV, Zorov DB, Skulachev VP. Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 2. Treatment of some ROS- and age-related diseases (heart arrhythmia, heart infarctions, kidney ischemia, and stroke). Biochemistry (Mosc). 2008;73(12):1288–99. DOI: 10.1134/s000629790812002x

38. Hamed M, Logan A, Gruszczyk AV, Beach TE, James AM, Dare AJ, Barlow A, Martin J, Georgakopoulos N, Gane AM, Crick K, Fouto D, Fear C, Thiru S, Dolezalova N, Ferdinand JR, Clatworthy MR, Hosgood SA, Nicholson ML, Murphy MP, Saeb-Parsy K. Mitochondria-targeted antioxidant MitoQ ameliorates ischaemia-reperfusion injury in kidney transplantation models. Br J Surg. 2021;108(9):1072–81. DOI: 10.1093/bjs/znab108


Review

For citations:


Senokosova E.A., Velikanova E.A., Mukhamadiyarov R.A., Sidorova O.D., Krivkina E.O., Antonova L.V., Grigoriev E.V. Analysis of mitochondrial-targeted antioxidant SkQ1 effectiveness on myocardial ischemia-reperfusion injury in a rat model: Focus on morphological and ultrastructural tissue study. Pharmacy & Pharmacology. 2024;12(3):219-230. https://doi.org/10.19163/2307-9266-2024-12-3-219-230

Views: 301


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2307-9266 (Print)
ISSN 2413-2241 (Online)