Treatment approaches to pulmonary lymphangioleomyomatosis: From surgical extirpation to molecular biology
https://doi.org/10.19163/2307-9266-2024-12-5-338-349
Abstract
The aim of the work was to collect and systematize the data on the treatment approaches to pulmonary lymphangioleiomyomatosis (LAM) based on insights into the pathogenesis of the disease.
Materials and methods. 70 original sources have been selected from analyzed 1 157 articles and monographs (including duplicates). The search for the sources was carried out in the databases of PubMed, eLibrary.ru, Cyberleninka for a fifty-year period of publications (from 1973 to August 2023), with an emphasis on more current publications and the ones in highly rated scientific journals.
Results. The review presents the treatment approaches to LAM, based both on clinical observations of the disease course and on the experimental data on its probable pathogenesis. The collected data are presented in the chronological order, starting from radical methods based on the idea of an unconditional connection between the development of LAM and the female sex hormones. Special attention has been paid to the drugs from the group of mTOR inhibitors, including their safety profile. In addition, the results of the studies demonstrating new promising methods of the LAM drug therapy, both combining the use of mTOR inhibitors with other drugs, and the ones based on the isolated use of alternative groups of drugs, are presented in the work.
Conclusion. The currently used methods of the drug therapy and the proposed new methods are aimed at only treating an already established disease, and the effective drug prevention of LAM now seems almost impossible due to the lack of a complete understanding about its pathogenesis and, more importantly, its etiology. This issue is the most relevant in determining further prospects for the development of pharmacotherapeutic approaches to LAM.
About the Authors
I. V. PolovnikovRussian Federation
pulmonologist, senior laboratory assistant of the department of pathological anatomy with a pathology clinical department, Pavlov First Saint Petersburg State Medical University.
Bld. 6, 8, Lev Tolstoy Str., Saint Petersburg, Russia, 197022.
G. Yu. Yukina
Russian Federation
Candidate of sciences (Biology), associate professor, head of the scientific laboratory of pathomorphology of the scientific and clinical center of pathomorphology, Pavlov First Saint Petersburg State Medical University.
Bld. 6, 8, Lev Tolstoy Str., Saint Petersburg, Russia, 197022.
E. G. Sukhorukova
Russian Federation
Candidate of sciences (Medicine), senior researcher at the scientific laboratory of pathomorphology of the scientific and clinical center of pathomorphology, Pavlov First Saint Petersburg State Medical University.
Bld. 6, 8, Lev Tolstoy Str., Saint Petersburg, Russia, 197022.
References
1. Polovnikov IV, Yukina GYu, Sukhorukova EG. Pathomorphological Characteristic of Pulmonary Lymphangioleiomyomatosis. Journal of Anatomy and Histopathology. 2023;12(4):89–97. DOI: 10.18499/2225-7357-2023-12-4-89-97
2. Kwiatkowski DJ. Animal models of lymphangioleiomyomatosis (LAM) and tuberous sclerosis complex (TSC). Lymphat Res Biol. 2010;8(1):51–7. DOI: 10.1089/lrb.2009.0013
3. Sullivan EJ. Lymphangioleiomyomatosis: a review. Chest. 1998;114 (6):1689–703. DOI: 10.1378/chest.114.6.1689
4. Zhang H, Hu Z, Wang S, Wu K, Yang Q, Song X. Clinical features and outcomes of male patients with lymphangioleiomyomatosis: A review. Medicine (Baltimore). 2022;101(52):e32492. DOI: 10.1097/MD.0000000000032492
5. Harknett EC, Chang WY, Byrnes S, Johnson J, Lazor R, Cohen MM, Gray B, Geiling S, Telford H, Tattersfield AE, Hubbard RB, Johnson SR. Use of variability in national and regional data to estimate the prevalence of lymphangioleiomyomatosi. QJM. 2011;104(11):971–9. DOI: 10.1093/qjmed/hcr116
6. Young LR, Vandyke R, Gulleman PM, Inoue Y, Brown KK, Schmidt LS, Linehan WM, Hajjar F, Kinder BW, Trapnell BC, Bissler JJ, Franz DN, McCormack FX. Serum vascular endothelial growth factor-D prospectively distinguishes lymphangioleiomyomatosis from other diseases. Chest. 2010;138 (3):674–81. DOI: 10.1378/chest.10-0573
7. Chang WYC, Cane JL, Blakey JD, Kumaran M, Pointon KS, Johnson SR. Clinical utility of diagnostic guidelines and putative biomarkers in lymphangioleiomyomatosis. Respir Res. 2012;13(1):34. DOI: 10.1186/1465-9921-13-34
8. Li M, Zhu WY, Wang J. Yang XD, Li WM, Wang G. Diagnostic performance of VEGF-D for lymphangioleiomyomatosis: a meta-analysis. J Bras Pneumol. 2022;48(1):e20210337. DOI: 10.36416/1806-3756/e20210337
9. Herranz C, Mateo F, Baiges A, Ruiz de Garibay G, Junza A, Johnson SR, Miller S, García N, Capellades J, Gómez A, Vidal A, Palomero L, Espín R, Extremera AI, Blommaert E, Revilla-López E, Saez B, Gómez-Ollés S, Ancochea J, Valenzuela C, Alonso T, Ussetti P, Laporta R, Xaubet A, Rodríguez-Portal JA, Montes-Worboys A, Machahua C, Bordas J, Menendez JA, Cruzado JM, Guiteras R, Bontoux C, La Motta C, Noguera-Castells A, Mancino M, Lastra E, Rigo-Bonnin R, Perales JC, Viñals F, Lahiguera A, Zhang X, Cuadras D, van Moorsel CHM, van der Vis JJ, Quanjel MJR, Filippakis H, Hakem R, Gorrini C, Ferrer M, Ugun-Klusek A, Billett E, Radzikowska E, Casanova Á, Molina-Molina M, Roman A, Yanes O, Pujana MA. Histamine signaling and metabolism identify potential biomarkers and therapies for lymphangioleiomyomatosis. EMBO Mol Med. 2021;13(9):e13929. DOI: 10.15252/emmm.202113929
10. Revilla-López E, Ruiz de Miguel V, López-Meseguer M, Berastegui C, Boada-Pérez M, Mendoza-Valderrey A, Arjona-Peris M, Zapata-Ortega M, Monforte V, Bravo C, Roman A, Gómez-Ollés S, Sáez-Giménez B. Lymphangioleiomyomatosis: Searching for potential biomarkers. Front Med (Lausanne). 2023;10:1079317. DOI: 10.3389/fmed.2023.1079317
11. Torre O, Elia D, Caminati A, Harari S. New insights in lymphangioleiomyomatosis and pulmonary Langerhans cell histiocytosis. Eur Respir Rev. 2017;26(145):170042. DOI: 10.1183/16000617.0042-2017
12. Moses MA, Harper J, Folkman J. Doxycycline treatment for lymphangioleiomyomatosis with urinary monitoring for MMPs. N Engl J Med. 2006;354(24):2621–2. DOI: 10.1056/NEJMc053410
13. Kirkpatrick JD, Soleimany AP, Dudani JS, Liu HJ, Lam HC, Priolo C, Henske EP, Bhatia SN. Protease activity sensors enable real-time treatment response monitoring in lymphangioleiomyomatosis. Eur Respir J. 2022;59(4):2100664. DOI: 10.1183/13993003.00664-2021
14. Pacheco-Rodriguez G, Steagall WK, Crooks DM, Stevens LA, Hashimoto H, Li S, Wang JA, Darling TN, Moss J. TSC2 loss in lymphangioleiomyomatosis cells correlated with expression of CD44v6, a molecular determinant of metastasis. Cancer Res. 2007;67(21):10573–81. DOI: 10.1158/0008-5472.CAN-07-1356
15. Banville N, Burgess JK, Jaffar J, Tjin G, Richeldi L, Cerri S, Persiani E, Black JL, Oliver BG. A quantitative proteomic approach to identify significantly altered protein networks in the serum of patients with lymphangioleiomyomatosis (LAM). PLoS One. 2014;9(8):e105365. DOI: 10.1371/journal.pone.0105365
16. Gu W, Pan Y, Zhao W, Liu J, Meng Y. Metabolic signatures of lymphangioleiomyomatosis in biofluids: nuclear magnetic resonance (NMR)-based metabonomics of blood plasma: a case-control study. Ann Transl Med. 2023;11(2):76. DOI: 10.21037/atm-22-6420
17. Nijmeh J, El-Chemaly S, Henske EP. Emerging biomarkers of lymphangioleiomyomatosis. Expert Rev Respir Med. 2018;12(2):95–102. DOI: 10.1080/17476348.2018.1409622
18. Atochina-Vasserman EN, Guo CJ, Abramova E, Golden TN, Sims M, James ML, Beers MF, Gow AJ, Krymskaya VP. Surfactant dysfunction and lung inflammation in the female mouse model of lymphangioleiomyomatosis. Am J Respir Cell Mol Biol. 2015;53 (1):96–104. DOI: 10.1165/rcmb.2014-0224OC
19. Ibadova O.A., Aralov N.R., Kurbanova Z.P. The role of surfactant protein D (SP-D) in the immune response in nonspecific interstitial pneumonia. Achievements of science and education. 2020;4(58):45–9. EDN: PNTVUP. Russian
20. Kitzsteiner KA, Mallen RG. Pulmonary lymphangiomyomatosis: treatment with castration. Cancer. 1980;46(10):2248–9. DOI: 10.1002/1097-0142(19801115)46:10<2248::aid-cncr2820461022>3.0.co;2-5
21. Matsui K, Takeda K, Yu ZX, Valencia J, Travis WD, Moss J, Ferrans VJ. Downregulation of estrogen and progesterone receptors in the abnormal smooth muscle cells in pulmonary lymphangioleiomyomatosis following therapy. An immunohistochemical study. Am J Respir Crit Care Med. 2000;161(3 Pt 1):1002–9. DOI: 10.1164/ajrccm.161.3.9904009
22. Li C, Zhou X, Sun Y, Zhang E, Mancini JD, Parkhitko A, Morrison TA, Silverman EK, Henske EP, Yu JJ. Faslodex inhibits estradiol-induced extracellular matrix dynamics and lung metastasis in a model of lymphangioleiomyomatosis. Am J Respir Cell Mol Biol. 2013;49(1):135–42. DOI: 10.1165/rcmb.2012-0476OC
23. Terasaki Y, Yahiro K, Pacheco-Rodriguez G, Steagall WK, Stylianou MP, Evans JF, Walker AM, Moss J. Effects of prolactin on TSC2-null Eker rat cells and in pulmonary lymphangioleiomyomatosis. Am J Respir Crit Care Med. 2010;182(4):531–9. DOI: 10.1164/rccm.200911-1737OC
24. Shaw BM, Kopras E, Gupta N. Menstrual cycle-related respiratory symptom variability in patients with lymphangioleiomyomatosis. Ann Am Thorac Soc. 2022;19 (9):1619–21. DOI: 10.1513/AnnalsATS.202202-144RL
25. Harari S, Cassandro R, Chiodini I, Taveira-DaSilva AM, Moss J. Effect of a gonadotrophin-releasing hormone analogue on lung function in lymphangioleiomyomatosis. Chest. 2008;133(2):448–54. DOI: 10.1378/chest.07-2277
26. Lu Y., Lu Y, Liu X, Zhang E, Kopras EJ, Smith EP, Astreinidis A, Li C, Leung YK, Ho SM, Yu JJ. Estrogen activates pyruvate kinase M2 and increases the growth of TSC2-deficient cells. PLoS One. 2020;15(2):e0228894. DOI: 10.1371/journal.pone.0228894
27. Prizant H, Hammes SR. Minireview: Lymphangioleiomyomatosis (LAM): The «Other» Steroid-Sensitive Cancer. Endocrinology. 2016;157(9):3374–83. DOI: 10.1210/en.2016-1395
28. Johnson J., Johnson SR. Cross-sectional study of reversible airway obstruction in LAM: better evidence is needed for bronchodilator and inhaled steroid use. Thorax. 2019;74(10):999–1002. DOI: 10.1136/thoraxjnl-2019-213338
29. Yang B, Moss J. Cell survival pathways targeted in rare lung disease affecting women. Sci Adv. 2023;9(19):eadi1215. DOI: 10.1126/sciadv.adi1215
30. Mutvei AP, Nagiec MJ, Hamann JC, Kim SG, Vincent CT, Blenis J. Rap1-GTPases control mTORC1 activity by coordinating lysosome organization with amino acid availability. Nature Communications. 2020;11(1):1–13. DOI: 10.1038/s41467-020-15156-5
31. Cheng C, Xu W, Wang Y, Zhang T, Yang L, Zhou W, Hu D, Yang Y, Tian X, Xu KF. Sirolimus reduces the risk of pneumothorax recurrence in patients with lymphangioleiomyomatosis: a historical prospective self-controlled study. Orphanet J Rare Dis. 2022;17(1):257. DOI: 10.1186/s13023-022-02418-2
32. Ando K, Kurihara M, Kataoka H, Ueyama M, Togo S, Sato T, Doi T, Iwakami S, Takahashi K, Seyama K, Mikami M. Efficacy and safety of low-dose sirolimus for treatment of lymphangioleiomyomatosis. Respir Investig. 2013;51(3):175–83. DOI: 10.1016/j.resinv.2013.03.002
33. Hu S, Wu X, Xu W, Tian X, Yang Y, Wang ST, Liu S, Xu X, Xu KF. Long-term efficacy and safety of sirolimus therapy in patients with lymphangioleiomyomatosis. Orphanet J Rare Dis. 2019;14(1):206. DOI: 10.1186/s13023-019-1178-2
34. Shen L, Xu W, Gao J, Wang J, Huang J, Wang Y, He Y, Yang Y, Tian X, Xu KF. Pregnancy after the diagnosis of lymphangioleiomyomatosis (LAM). Orphanet J Rare Dis. 2021;16(1):133. DOI: 10.1186/s13023-021-01776-7
35. Faehling M, Wienhausen-Wilke V, Fallscheer S, Trinajstic-Schulz B, Weber J, Leschke M. Long-term stable lung function and second uncomplicated pregnancy on sirolimus in lymphangioleiomyomatosis (LAM). Sarcoidosis Vasc Diffuse Lung Dis. 2015;32(3):259–64.
36. Pharmacology of Immunosuppression. Eisen HJ, editor. Volume 272. Switzerlan: Springer Nature; 2022. 351 p. DOI: 10.1007/978-3-031-05118-0
37. El-Chemaly S, Goldberg HJ, Glanville AR. Should mammalian target of rapamycin inhibitors be stopped in women with lymphangioleiomyomatosis awaiting lung transplantation? Expert Rev Respir Med. 2014;8(6):657–60. DOI: 10.1586/17476348.2014.956728
38. Warrior K, Leard LE, Nair AR, Gries CJ, Fisher AJ, Johnson SR, McCormack FX, Dilling DF. A survey of use of mTOR inhibitors in patients with lymphangioleiomyomatosis listed for lung transplant. Respir Med. 2022;195:106779. DOI: 10.1016/j.rmed.2022.106779
39. Peron A, La Briola F, Bruschi F, Terraneo S, Vannicola C, Previtali R, Perazzoli S, Morenghi E, Bulfamante G, Vignoli A, Canevini MP. Tuberous sclerosis complex (TSC), lymphangioleiomyomatosis, and COVID-19: The experience of a TSC clinic in Italy. Am J Med Genet A. 2020;182(11):2479–85. DOI: 10.1002/ajmg.a.61810
40. Baldi BG, Radzikowska E, Cottin V, Dilling DF, Ataya A, Carvalho CRR, Harari S, Koslow M, Grutters JC, Inoue Y, Gupta N, Johnson SR. COVID-19 in lymphangioleiomyomatosis: an international study of outcomes and impact of mechanistic target of rapamycin inhibition. Chest. 2022;161(6):1589–93. DOI: 10.1016/j.chest.2021.12.640
41. Glowacki J, Holland G, Graham C, Bakhsh K. Acute hypoxemic respiratory failure due to COVID-19 in a patient with underlying lymphangioleiomyomatos. Cureus. 2022;14 (6):e25871. DOI: 10.7759/cureus.25871
42. Steagall WK, Stylianou M, Pacheco-Rodriguez G, Yu ZX, Moss J. Unexpected sirolimus-stimulated airway hyperreactivity in lymphangioleiomyomatosis. ERJ Open Res. 2023;9(4):00305–2023. DOI: 10.1183/23120541.00305-2023
43. Cong CV, Anh TT, Ly TT, Duc NM. Pulmonary lymphangioleiomyomatosis (LAM): A literature overview and case report. Radiol Case Rep. 2022;17(5):1646–55. DOI: 10.1016/j.radcr.2022.02.075
44. Finlay GA, Malhowski AJ, Liu Y, Fanburg BL, Kwiatkowski DJ, Toksoz D. Selective inhibition of growth of tuberous sclerosis complex 2 null cells by atorvastatin is associated with impaired Rheb and Rho GTPase function and reduced mTOR/S6 kinase activity. Cancer Res. 2007;67(20):9878–86. DOI: 10.1158/0008-5472.CAN-07-1394
45. Goncharova EA, Goncharov DA, Li H, Pimtong W, Lu S, Khavin I, Krymskaya VP. mTORC2 is required for proliferation and survival of TSC2-null cells. Mol Cell Biol. 2011;31(12):2484–98. DOI: 10.1128/MCB.01061-10
46. Goncharova EA, Goncharov DA, Fehrenbach M, Khavin I, Ducka B, Hino O, Colby TV, Merrilees MJ, Haczku A, Albelda SM, Krymskaya VP. Prevention of alveolar destruction and airspace enlargement in a mouse model of pulmonary lymphangioleiomyomatosis (LAM). Sci Transl Med. 2012;4(154):154ra134. DOI: 10.1126/scitranslmed.3003840
47. Atochina-Vasserman EN, Goncharov DA, Volgina AV, Milavec M, James ML, Krymskaya VP. Statins in lymphangioleiomyomatosis. Simvastatin and atorvastatin induce differential effects on tuberous sclerosis complex 2-null cell growth and signaling. Am J Respir Cell Mol Biol. 2013;49(5):704–9. DOI: 10.1165/rcmb.2013-0203RC
48. Krymskaya VP, Courtwright AM, Fleck V, Dorgan D, Kotloff R, McCormack FX, Kreider M. A phase II clinical trial of the Safety Of Simvastatin (SOS) in patients with pulmonary lymphangioleiomyomatosis and with tuberous sclerosis complex. Respir Med. 2020;163:105898. DOI: 10.1016/j.rmed.2020.105898
49. Tang Y, El-Chemaly S, Taveira-Dasilva A, Goldberg HJ, Bagwe S, Rosas IO, Moss J, Priolo C, Henske EP. Alterations in polyamine metabolism in patients with lymphangioleiomyomatosis and tuberous sclerosis complex 2-deficient cells. Chest. 2019;156(6):1137–48. DOI: 10.1016/j.chest.2019.05.038
50. Zhao D, Wu J, Zhao Y, Shao W, Cheng Q, Shao X, Yuan X, Ye J, Gao J, Jin M, Li C, Chen X, Zhao Y, Xue B. Zoledronic acid inhibits TSC2-null cell tumor growth via RhoA/YAP signaling pathway in mouse models of lymphangioleiomyomatosis. Cancer Cell. 2020;20(46):1–11. DOI: 10.1186/s12935-020-1131-4
51. Galiniak S, Aebisher D, Bartusik-Aebisher D. Health benefits of resveratrol administration. Acta Biochim Pol. 2019;66(1):13–21. DOI: 10.18388/abp.2018_2749
52. Gupta N, Zhang B, Zhou Y, McCormack FX, Ingledue R, Robbins N, Kopras EJ, McMahan S, Singla A, Swigris J, Cole AG, Holz MK. Safety and efficacy of combined resveratrol and sirolimus in lymphangioleiomyomatosis. Chest. 2023;S0012-3692(23)00041-7. DOI: 10.1016/j.chest.2023.01.007
53. Lesma E, Chiaramonte E, Ancona S, Orpianesi E, Di Giulio AM, Gorio A. Anti-EGFR antibody reduces lung nodules by inhibition of EGFR-pathway in a model of lymphangioleiomyomatosis. Biomed Res Int. 2015;2015:315240. DOI: 10.1155/2015/315240
54. Atochina-Vasserman EN, Abramova E, James ML, Rue R, Liu AY, Ersumo NT, Guo CJ, Gow AJ, Krymskaya VP. Pharmacological targeting of VEGFR signaling with axitinib inhibits Tsc2-null lesion growth in the mouse model of lymphangioleiomyomatosis. Am J Physiol Lung Cell Mol Physiol. 2015;309(12):L1447–54. DOI: 10.1152/ajplung.00262.2015
55. Weckmann M, Moir LM, Heckman CA, Black JL, Oliver BG, Burgess JK. Lamstatin – a novel inhibitor of lymphangiogenesis derived from collagen IV. J Cell Mol Med. 2012;16(12):3062–73. DOI: 10.1111/j.1582-4934.2012.01648.x
56. Chang WYC, Cane JL, Kumaran M, Lewis S, Tattersfield AE. Johnson SR. A 2-year randomised placebo-controlled trial of doxycycline for lymphangioleiomyomatosis. Eur Respir J. 2014;43(4):1114–23. DOI: 10.1183/09031936.00167413
57. Li C, Lee PS, Sun Y, Gu X, Zhang E, Guo Y, Wu CL, Auricchio N, Priolo C, Li J, Csibi A, Parkhitko A, Morrison T, Planaguma A, Kazani S, Israel E, Xu KF, Henske EP, Blenis J, Levy BD, Kwiatkowski D, Yu JJ. Estradiol and mTORC2 cooperate to enhance prostaglandin biosynthesis and tumorigenesis in TSC2-deficient LAM cells. J Exp Med. 2014;211(1):15–28. DOI: 10.1084/jem.20131080
58. El-Chemaly S, Taveira-DaSilva A, Bagwe S, Klonowska K, Machado T, Lamattina AM, Goldberg HJ, Jones AM, Julien-Williams P, Maurer R, Rosas IO, Henske EP, Moss J, Kwiatkowski DJ. Celecoxib in lymphangioleiomyomatosis: results of a phase I clinical trial. Eur Respir J. 2020;55(5):1902370. DOI: 10.1183/13993003.02370-2019
59. Steagall WK, Stylianou M, Pacheco-Rodriguez G, Moss J. Angiotensin-converting enzyme inhibitors may affect pulmonary function in lymphangioleiomyomatosis. JCI Insight. 2019;4(5):e126703. DOI: 10.1172/jci.insight.126703
60. Lieberman J. Elevation of serum angiotensin-converting-enzyme (ACE) level in sarcoidosis. Am J Med. 1975;59(3):365–72. DOI: 10.1016/0002-9343(75)90395-2
61. Shrestha S, Adib E, Imani J, Aguiar DJ, Lamattina AM, Tassew DD, Henske EP, Perrella MA, Priolo C, El-Chemaly S. Angiotensin II receptor type 1 blockade regulates Klotho expression to induce TSC2-deficient cell death. J Biol Chem. 2022;298(11):102580. DOI: 10.1016/j.jbc.2022.102580
62. Bernardelli C, Ancona S, Lazzari M, Lettieri A, Selvaggio P, Massa V, Gervasini C, Di Marco F, Chiaramonte R, Lesma E. LAM cells as potential drivers of senescence in lymphangioleiomyomatosis microenvironment. Int J Mol Sci. 2022;23 (13):7040. DOI: 10.3390/ijms23137040
63. Dongre A, Clements D, Fisher AJ, Johnson SR. Cathepsin K in lymphangioleiomyomatosis: LAM cell-fibroblast interactions enhance protease activity by extracellular acidification. Am J Pathol. 2017;187(8):1750–62. DOI: 10.1016/j.ajpath.2017.04.014
64. Bernardelli C, Caretti A, Lesma E. Dysregulated lipid metabolism in lymphangioleiomyomatosis pathogenesis as a paradigm of chronic lung diseases. Front Med (Lausanne). 2023;10:1124008. DOI: 10.3389/fmed.2023.1124008
65. Li F, Zhang Y, Lin Z, Yan L, Liu Q, Li Y, Pei X, Feng Y, Han X, Yang J, Zheng F, Li T, Zhang Y, Fu Z, Shao D, Yu J, Li C. Targeting SPHK1/S1PR3-regulated S-1-P metabolic disorder triggers autophagic cell death in pulmonary lymphangiomyomatosis (LAM). Cell Death Dis. 2022;(13):1065. DOI: 10.1038/s41419-022-05511-3
66. Maisel K, Merrilees MJ, Atochina-Vasserman EN, Lian L, Obraztsova K, Rue R, Vasserman AN, Zuo N, Angel LF, Gow AJ, Kang I, Wight TN, Eruslanov E, Swartz MA, Krymskaya VP. Immune checkpoint ligand PD-L1 is upregulated in pulmonary lymphangioleiomyomatosis. Am J Respir Cell Mol Biol. 2018;59(6):723–32. DOI: 10.1165/rcmb.2018-0123OC
67. Klover PJ, Thangapazham RL, Kato J, Wang JA, Anderson SA, Hoffmann V, Steagall WK, Li S, McCart E, Nathan N, Bernstock JD, Wilkerson MD, Dalgard CL, Moss J, Darling TN. Tsc2 disruption in mesenchymal progenitors results in tumors with vascular anomalies overexpressing Lgals3. Elife. 2017;6:e23202. DOI: 10.7554/eLife.23202
68. Su W, Zhao Z, Liu X, Xin J, Xia S, Shen W. Bioinformatics analysis of inflammation and oncology in pulmonary lymphangioleiomyomatosis. Medicine (Baltimore). 2022;101(38):e30593. DOI: 10.1097/MD.0000000000030593
69. Feng Y, Li T, Li Y, Lin Z, Han X, Pei X, Zhang Y, Li F, Yang J, Shao D, Li C. Glutaredoxin-1 promotes lymphangioleiomyomatosis progression through inhibiting Bim-mediated apoptosis via COX2/PGE2/ERK pathway. Clin Transl Med. 2023;13(7):e1333. DOI: 10.1002/ctm2.1333
70. Yoon HY, Kim HJ, Song JW. Long-term clinical course and outcomes in patients with lymphangioleiomyomatosis. Respir Res. 2022;23(1):158. DOI: 10.1186/s12931-022-02079-6
Review
For citations:
Polovnikov I.V., Yukina G.Yu., Sukhorukova E.G. Treatment approaches to pulmonary lymphangioleomyomatosis: From surgical extirpation to molecular biology. Pharmacy & Pharmacology. 2024;12(5):338-349. https://doi.org/10.19163/2307-9266-2024-12-5-338-349