Preview

Pharmacy & Pharmacology

Advanced search

Microbiological landscape and parameters of antibiotic resistance of pathogens in patients of neonatal intensive care units

https://doi.org/10.19163/2307-9266-2024-12-6-378-393

Abstract

Neonatal infections remain one of the significant causes of infant mortality in the world. The change in the spectrum of pathogens, as well as their sensitivity to the main antibacterial drugs (ABDs), is a dynamically occurring process, characterized by a gradual increase in the proportion of the most dangerous pathogens, in particular, those belonging to the ESKAPE pathogen group. The study of the structure of pathogens and the parameters of their antibiotic resistance is the main tool for increasing the effectiveness of antibiotic therapy.

The aim. To analyze the structure of pathogens of nosocomial infections in patients of neonatal intensive care units (NICU) and assess the parameters of their antibiotic resistance.

Materials and methods. A retrospective epidemiological study of data from May 1, 2022 to May 1, 2024 of the laboratory information system LIS-Alice of the Kommunarka Center (Moscow, Russia) and medical documentation of patients with identified growth of microorganisms (MOs) in bacteriological cultures was carried out.

Results. The total number of crops was 5179, MOs growth was noted in 39.3% (n=2036) obtained from 734 patients, of which 87.1% were premature. Gram-positive pathogens were found in 59.6%. The top 5 identified MOs were: S. epidermidis (n=386 — 19%), S. haemolyticus (n=264 — 13%), S. aureus (n=218 — 10.7%), K. pneumoniae (n=210 - 10.3%) and E. coli (n=188 — 9.2%). The proportion of MOs belonging to the ESKAPE group was 28.6% (S. aureus — 10.7%; K. pneumoniae — 10.3%; Enterobacter spp. — 3.6%; P. aeruginosa — 2.3%; A. baumannii — 1.1%; E. faecium — 0.5%). Among Staphylococcus spp. — 71.2% were resistant to oxacillin, 53.9% — to gentamicin. At the same time, 100% sensitivity to any of the tested ABDs was not detected. The highest rates of resistance to oxacillin were observed in S. epidermidis (93.8%) and S. haemolyticus (86.7%). Also, 17% of S. aureus strains were resistant to oxacillin. Among K. pneumonia 48.8% were resistant to ceftazidime and 100% to ampicillin; E. coli 28.2% of strains were resistant to ceftazidime, 64.9% to ampicillin, 28.2% to sulfamethoxazole trimethoprim.

Conclusion. We found a high frequency of pathogen isolation (with a predominance of gram-positive pathogens) in newborns hospitalized in the ICU (mean gestational age <35 weeks). The results demonstrate alarming trends in relation to MOs resistance parameters and indicate the need for dynamic monitoring of the sensitivity of pathogens to the main ABDs used in the ICU.

About the Authors

O. I. Butranova
Peoples’ Friendship University (RUDN University).
Russian Federation

Candidate of Sciences (Medicine), Assistant Professor of the Department of General and Clinical Pharmacology of the Medical Institute, Peoples' Friendship University (RUDN University).

6 Miklukho-Maklaya Str., Moscow, Russia, 117198



A. A. Gorbacheva
1. Peoples’ Friendship University (RUDN University). 2. Kommunarka Center.
Russian Federation

Assistant Lecturer of the Department of General and Clinical Pharmacology of the Medical Institute, Peoples' Friendship University (RUDN University); Doctor-Clinical Pharmacologist of Kommunarka Center (Moscow, Russia).

1.  6 Miklukho-Maklaya Str., Moscow, Russia, 117198.

2.  8/3 Sosenskiy Stan Str., Moscow, Russia, 108814.

 



S. K. Zyryanov
1. Peoples’ Friendship University (RUDN University). 2. City Clinical Hospital No. 24.
Russian Federation

Doctor of Sciences (Medicine), Professor, Head of the Department of General and Clinical Pharmacology of the Peoples' Friendship University (RUDN University); Deputy Chief Physician of the City Clinical Hospital No. 24 (Moscow, Russia). 

1.  6 Miklukho-Maklaya Str., Moscow, Russia, 117198.

2.  10 Pistsovaya Str., Moscow, Russia, 127015.



O. G. Ni
Kommunarka Center.
Russian Federation

Head of the Department of Clinical Pharmacology of the Kommunarka Center (Moscow, Russia). 

8/3 Sosenskiy Stan Str., Moscow, Russia, 108814



References

1. Kulizhnikov GV, Furman EG, Nikolenko AV. Diagnostic value of laboratory markers of neonatal sepsis in premature infants. Pediatria n.a. G.N. Speransky. 2021;100(1):95–100. DOI: 10.24110/0031-403X-2021-100-1-95-100

2. Dmitriev AV, Zaplatnikov AL. Neonatal sepsis: modern diagnostic capabilities. Pediatria n.a. G.N. Speransky. 2022;101(1):140–148. DOI: 10.24110/0031-403X-2022-101-1-140-148

3. Flannery DD, Puopolo KM, Hansen NI, Sánchez PJ, Stoll BJ; Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network. Neonatal infections: Insights from a multicenter longitudinal research collaborative. Semin Perinatol. 2022;46(7):151637. DOI: 10.1016/j.semperi.2022.151637

4. Moftian N, Samad Soltani T, Mirnia K, Esfandiari A, Tabib MS, Rezaei Hachesu P. Clinical Risk Factors for Early-Onset Sepsis in Neonates: An International Delphi Study. Iran J Med Sci. 2023;48(1):57–69. DOI: 10.30476/IJMS.2022.92284.2352

5. Sewell E, Roberts J, Mukhopadhyay S. Association of Infection in Neonates and Long-Term Neurodevelopmental Outcome. Clin Perinatol. 2021;48(2):251–261. DOI: 10.1016/j.clp.2021.03.001

6. Thomas R, Bijlsma MW, Gonçalves BP, Nakwa FL, Velaphi S, Heath PT. Long-term impact of serious neonatal bacterial infections on neurodevelopment. Clin Microbiol Infect. 2024;30(1):28–37. DOI: 10.1016/j.cmi.2023.04.017

7. Bedetti L, Corso L, Miselli F, Guidotti I, Toffoli C, Miglio R, Roversi MF, Muttini EDC, Pugliese M, Bertoncelli N, Zini T, Mazzotti S, Lugli L, Lucaccioni L, Berardi A. Neurodevelopmental Outcome after Culture-Proven or So-Called Culture-Negative Sepsis in Preterm Infants. J Clin Med. 2024;13(4):1140. DOI: 10.3390/jcm13041140

8. Odabasi IO, Bulbul A. Neonatal Sepsis. Sisli Etfal Hastan Tip Bul. 2020;54(2):142–158. DOI: 10.14744/SEMB.2020.00236

9. Guo L, Han W, Su Y, Wang N, Chen X, Ma J, Liang J, Hao L, Ren C. Perinatal risk factors for neonatal early-onset sepsis: a meta-analysis of observational studies. J Matern Fetal Neonatal Med. 2023;36(2):2259049. DOI: 10.1080/14767058.2023.2259049

10. Seyoum K, Sahiledengle B, Kene C, Geta G, Gomora D, Ejigu N, Mesfin T, Kumar Chattu V. Determinants of neonatal sepsis among neonates admitted to neonatal intensive care units in ethiopian hospitals: A systematic review and meta-analysis. Heliyon. 2023;9(9):e20336. DOI: 10.1016/j.heliyon.2023.e20336

11. Murthy S, Godinho MA, Guddattu V, Lewis LES, Nair NS. Risk factors of neonatal sepsis in India: A systematic review and meta-analysis. PLoS One. 2019;14(4):e0215683. DOI: 10.1371/journal.pone.0215683

12. Belachew A, Tewabe T. Neonatal sepsis and its association with birth weight and gestational age among admitted neonates in Ethiopia: systematic review and meta-analysis. BMC Pediatr. 2020;20(1):55. DOI: 10.1186/s12887-020-1949-x

13. Lloyd LG, Bekker A, Van Weissenbruch MM, Dramowski A. Healthcare-associated Infections in Very Low Birth-weight Infants in a South African Neonatal Unit: Disease Burden, Associated Factors and Short-term Outcomes. Pediatr Infect Dis J. 2022;41(11):911-916. DOI: 10.1097/INF.0000000000003666

14. Olenev AS, Konopliannikov AG, Songolova EN, Stetsyuk OV. Colonization of pregnant women with group B streptococcus: current view at the problem. Obstetrics, Gynecology and Reproduction. 2022;16(2):182–193. DOI: 10.17749/2313-7347/ob.gyn.rep.2022.284

15. Ferorelli D, Goffredo VM, Graziano E, Mastrapasqua M, Telegrafo M, Vinci A, Visci P, Benevento M, Zotti F, Foglianese A, Panza R, Solarino B, Dell'Erba A, Laforgia N. Quality improvement in neonatal care through enhanced patient safety and clinical risk management: a before-and-after study about neonatal sepsis. Front Med. 2024;11:1430853. DOI: 10.3389/fmed.2024.1430853

16. Karpova AL, Mostovoi AV, Martirosyan SV, Orlova OE, Karpov LN, Zaplatnikov AL. Early neonatal sepsis caused by Haemophilus influenzae. Obstetrics, Gynecology and Reproduction. 2023;17(3):366–375. DOI: 10.17749/2313-7347/ob.gyn.rep.2023.415

17. Glaser MA, Hughes LM, Jnah A, Newberry D. Neonatal Sepsis: A Review of Pathophysiology and Current Management Strategies. Adv Neonatal Care. 2021;21(1):49–60. DOI: 10.1097/ANC.0000000000000769

18. Pan T, Zhu Q, Li P, Hua J, Feng X. Late-onset neonatal sepsis in Suzhou, China. BMC Pediatr. 2020;20(1):261. DOI: 10.1186/s12887-020-02103-y

19. Tzialla C, Berardi A, Mondì V, On Behalf Of The Study Group Of Neonatal Infectious Diseases. Outbreaks in the Neonatal Intensive Care Unit: Description and Management. Trop Med Infect Dis. 2024;9(9):212. DOI: 10.3390/tropicalmed9090212

20. Parmigiani S, Bevilacqua G. Can we reduce worldwide neonatal mortality? Acta Biomed. 2022;93(5):e2022294. DOI: 10.23750/abm.v93i5.13225

21. Mahtab S, Madhi SA, Baillie VL, Els T, Thwala BN, Onyango D, Tippet-Barr BA, Akelo V, Igunza KA, Omore R, Arifeen SE, Gurley ES, Alam M, Chowdhury AI, Rahman A, Bassat Q, Mandomando I, Ajanovic S, Sitoe A, Varo R, Sow SO, Kotloff KL, Badji H, Tapia MD, Traore CB, Ogbuanu IU, Bunn J, Luke R, Sannoh S, Swarray-Deen A, Assefa N, Scott JAG, Madrid L, Marami D, Fentaw S, Diaz MH, Martines RB, Breiman RF, Madewell ZJ, Blau DM, Whitney CG; CHAMPS Consortium. Causes of death identified in neonates enrolled through Child Health and Mortality Prevention Surveillance (CHAMPS), December 2016 -December 2021. PLOS Glob Public Health. 2023;3(3):e0001612. DOI: 10.1371/journal.pgph.0001612

22. Jansen SJ, Lopriore E, van der Beek MT, Veldkamp KE, Steggerda SJ, Bekker V. The road to zero nosocomial infections in neonates-a narrative review. Acta Paediatr. 2021;110(8):2326–2335. DOI: 10.1111/apa.15886

23. Cernada M, De Alba Romero C, Fernández-Colomer B, González-Pacheco N, González M, Couce ML; en representación del Comité de Estándares y la Comisión de Infección Neonatal de la Sociedad Española de Neonatología. Health care-associated infections in neonatology. An Pediatr (Engl Ed). 2024;100(1):46–56. DOI: 10.1016/j.anpede.2023.12.004

24. Huang J, Cayabyab R, Cielo M, Ramanathan R. Incidence, Risk Factors, Short-term Outcomes, and Microbiome of Ventilator-associated Pneumonia in Very-low-birth-weight Infants: Experience at a Single Level III Neonatal Intensive Care Unit. Pediatr Infect Dis J. 2024. DOI: 10.1097/INF.0000000000004440

25. Prochaska EC, Xiao S, Colantuoni E, Clark RH, Johnson J, Mukhopadhyay S, Kalu IC, Zerr DM, Reich PJ, Roberts J, Flannery DD, Milstone AM; CDC Prevention Epicenters Program. Hospital-Onset Bacteremia Among Neonatal Intensive Care Unit Patients. JAMA Pediatr. 2024;178(8):792–799. DOI: 10.1001/jamapediatrics.2024.1840

26. Oldendorff F, Nordberg V, Giske CG, Navér L. A decade of neonatal sepsis in Stockholm, Sweden: Gram-positive pathogens were four times as common as Gram-negatives. Eur J Clin Microbiol Infect Dis. 2024;43(5):959–968. DOI: 10.1007/s10096-024-04809-8

27. Sorsa A. Epidemiology of Neonatal Sepsis and Associated Factors Implicated: Observational Study at Neonatal Intensive Care Unit of Arsi University Teaching and Referral Hospital, South East Ethiopia. Ethiop J Health Sci. 2019;29(3):333–342. DOI: 10.4314/ejhs.v29i3.5

28. Guo J, Luo Y, Wu Y, Lai W, Mu X. Clinical Characteristic and Pathogen Spectrum of Neonatal Sepsis in Guangzhou City from June 2011 to June 2017. Med Sci Monit. 2019;25:2296–2304. DOI: 10.12659/MSM.912375

29. Wang J, Zhang H, Yan J, Zhang T. Literature review on the distribution characteristics and antimicrobial resistance of bacterial pathogens in neonatal sepsis. J Matern Fetal Neonatal Med. 2022;35(5):861–870. DOI: 10.1080/14767058.2020.1732342

30. Song WS, Park HW, Oh MY, Jo JY, Kim CY, Lee JJ, Jung E, Lee BS, Kim KS, Kim EA. Neonatal sepsis-causing bacterial pathogens and outcome of trends of their antimicrobial susceptibility a 20-year period at a neonatal intensive care unit. Clin Exp Pediatr. 2022;65(7):350–357. DOI: 10.3345/cep.2021.00668

31. Marchant EA, Boyce GK, Sadarangani M, Lavoie PM. Neonatal Sepsis Due to Coagulase-Negative Staphylococci. Clin. Dev. Immunol. 2013;2013:586076. DOI: 10.1155/2013/586076

32. Le KY, Villaruz AE, Zheng Y, He L, Fisher EL, Nguyen TH, Ho TV, Yeh AJ, Joo HS, Cheung GYC, Otto M. Role of Phenol-Soluble Modulins in Staphylococcus epidermidis Biofilm Formation and Infection of Indwelling Medical Devices. J. Mol. Biol. 2019;431:3015–3027. DOI: 10.1016/j.jmb.2019.03.030

33. Ferreira ICDS, Menezes RP, Jesus TA, Lopes MSM, Araújo LB, Ferreira DMLM, Röder DVDB. Oxacillin-resistant Staphylococcus spp.: Impacts on fatality in a NICU in Brazil - confronting the perfect storm. Biomed Pharmacother. 2024;179:117373. DOI: 10.1016/j.biopha.2024.117373

34. Magnan C, Morsli M, Salipante F, Thiry B, Attar JE, Maio MD, Safaria M, Tran TA, Dunyach-Remy C, Ory J, Richaud-Morel B, Sotto A, Pantel A, Lavigne JP. Emergence of multidrug-resistant Staphylococcus haemolyticus in neonatal intensive care unit in Southern France, a genomic study. Emerg Microbes Infect. 2024;13(1):2353291. DOI: 10.1080/22221751.2024.2353291

35. Westberg R, Stegger M, Söderquist B. Molecular Epidemiology of Neonatal-Associated Staphylococcus haemolyticus Reveals Endemic Outbreak. Microbiol Spectr. 2022;10(6):e0245222. DOI: 10.1128/spectrum.02452-22

36. Shadbolt R, We MLS, Kohan R, Porter M, Athalye-Jape G, Nathan E, Shrestha D, Strunk T. Neonatal Staphylococcus aureus Sepsis: a 20-year Western Australian experience. J Perinatol. 2022;42(11):1440–1445. DOI: 10.1038/s41372-022-01440-3

37. Wang L, Zhen JH, Dong F, Lyu ZY. Cross-sectional Hospital-based Investigation on Clinical Characteristics of Pediatric Staphylococcus aureus Isolates in a Beijing Hospital from 2013 to 2022. Infect Drug Resist. 2024;17:4899–4912. DOI: 10.2147/IDR.S486832

38. Nordberg V, Iversen A, Tidell A, Ininbergs K, Giske CG, Navér L. A decade of neonatal sepsis caused by gram-negative bacilli-a retrospective matched cohort study. Eur J Clin Microbiol Infect Dis. 2021;40(9):1803–1813. DOI: 10.1007/s10096-021-04211-8

39. You T, Zhang H, Guo L, Ling KR, Hu XY, Li LQ. Differences in clinical characteristics of early- and late-onset neonatal sepsis caused by Klebsiella pneumoniae. Int J Immunopathol Pharmacol. 2020;34:2058738420950586. DOI: 10.1177/2058738420950586

40. Flannery DD, Akinboyo IC, Mukhopadhyay S, Tribble AC, Song L, Chen F, Li Y, Gerber JS, Puopolo KM. Antibiotic Susceptibility of Escherichia coli Among Infants Admitted to Neonatal Intensive Care Units Across the US From 2009 to 2017. JAMA Pediatr. 2021;175(2):168–175. DOI: 10.1001/jamapediatrics.2020.4719

41. Guo Y, Xiao R, Feng J, Wang X, Lai J, Kang W, Li Y, Zhu X, Ji T, Huang X, Pang D, An Y, Meng L, Wang Y. Distribution of virulence genes and antimicrobial resistance of Escherichia coli isolated from hospitalized neonates: A multi-center study across China. Heliyon. 2024;10(16):e35991. DOI: 10.1016/j.heliyon.2024.e35991

42. Pillay K, Ray-Chaudhuri A, O'Brien S, Heath P, Sharland M. Acinetobacter spp. in neonatal sepsis: an urgent global threat. Front Antibiot. 2024;3:1448071. DOI: 10.3389/frabi.2024.1448071

43. Elvan Tüz A, Tekin D, Ekemen Keleş Y, Şahin A, Üstündağ G, Taşar S, Kara Aksay A, Karadağ Öncel E, Yılmaz D. Clinical Reflections of Acinetobacter Infections in Children in a Quaternary-Care Hospital: A Five-Year Single-Center Experience. Turk Arch Pediatr. 2024;59(1):38–42. DOI: 10.5152/TurkArchPediatr.2024.23153

44. Mohamed RAE, Moustafa NM, Mahmoud FM, Elsaadawy YS, Aziz HSA, Gaber SAB, Hussin AM, Seadawy MG. Whole-genome sequencing of two multidrug-resistant Acinetobacter baumannii strains isolated from a neonatal intensive care unit in Egypt: a prospective cross-sectional study. BMC Microbiol. 2024;24(1):362. DOI: 10.1186/s12866-024-03482-3


Review

For citations:


Butranova O.I., Gorbacheva A.A., Zyryanov S.K., Ni O.G. Microbiological landscape and parameters of antibiotic resistance of pathogens in patients of neonatal intensive care units. Pharmacy & Pharmacology. 2024;12(6):378-393. https://doi.org/10.19163/2307-9266-2024-12-6-378-393

Views: 86


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2307-9266 (Print)
ISSN 2413-2241 (Online)