Brain-derived neurotrophic factor as a target for the search of anti-addiction drugs
https://doi.org/10.19163/2307-9266-2025-13-1-4-19
Abstract
The relationship between the influence of the brain-derived neurotrophic factor (BDNF) on the development of alcoholism and possible ways of using this molecule or related compounds (mimetics) as targets of anti-addictive action are discusses in the article.
The aim of the work was to carry out a literature review to identify potential applications of the BDNF signaling pathways to assess the feasibility of developing new drugs.
Materials and Methods. The following abstract databases were used to search for the information materials: PubMed, EMBASE, ResearchGate, elibrary.ru. The key queries for the search included the following ones: ‘BDNF’, “BDNF TrkB”, “BDNF LNGFR”, “alcoholism therapy”, “anti-addiction drugs”, “signaling pathways”, “alcoholism”, “ethanol”, “poisoning”. The depth of the search was 40 years (1985–2025). The total number of the sources included in the review is 116.
Results. This study analyzed the molecular mechanisms of the action of BDNF, including its biosynthesis, structural forms (BDNF and pro-BDNF), and functions and features of TrkB and LNGFR receptors. These receptors play a key role in the regulation of the neuronal plasticity, a neuronal survival and apoptotic processes. The performed review of the scientific literature made it possible to establish that at least 9 chemical compounds with a potential anti-addictive activity that affect the receptors and signaling cascades associated with BDNF, have been identified as of 2025. Based on the data obtained, a hypothesis about the prospective use of BDNF and its signaling pathways as potential targets for developing new pharmacological agents aimed at the treatment of alcohol dependence, have been formulated. The established facts can significantly expand the therapeutic opportunities in the fight against the alcoholic dependence and associated neurotoxic conditions.
Conclusion. At least 9 compounds with a potential anti-addictive activity associated with a mimetic effect on the receptors and signaling pathways of the BDNF molecule have been analyzed and found to exist as of 2025.
Keywords
About the Authors
M. S. KhalimanovRussian Federation
student of A.P. Nelyubin Institute of Pharmacy of Sechenov First Moscow State Medical University (Sechenov University).
2, Trubetskaya Str., Bldg 8, Moscow, Russia, 119991.
E. M. Grigorevskikh
Russian Federation
Senior Lecturer of the Department of Pharmacology, A.P. Nelyubin Institute of Pharmacy of Sechenov First Moscow State Medical University (Sechenov University).
2, Trubetskaya Str., Bldg 8, Moscow, Russia, 119991.
K. A. Zavadich
Russian Federation
Candidate of Sciences (Medicine), Associate Professor of the Department of Pharmacology, A.P. Nelyubin Institute of Pharmacy of Sechenov First Moscow State Medical University (Sechenov University).
2, Trubetskaya Str., Bldg 8, Moscow, Russia, 119991.
S. I. Sologov
Russian Federation
student of Sklifosovsky Institute of Clinical Medicine of Sechenov First Moscow State Medical University (Sechenov University).
2, Trubetskaya Str., Bldg 8, Moscow, Russia, 119991.
D. A. Traschenkova
Russian Federation
Assistant of the Department of Pharmacology, A.P. Nelyubin Institute of Pharmacy of Sechenov First Moscow State Medical University (Sechenov University).
2, Trubetskaya Str., Bldg 8, Moscow, Russia, 119991.
K. A. Tatzhikova
Russian Federation
Candidate of Sciences (Medicine), Associate Professor of the Department of Pharmacology, A.P. Nelyubin Institute of Pharmacy of Sechenov First Moscow State Medical University (Sechenov University).
2, Trubetskaya Str., Bldg 8, Moscow, Russia, 119991.
E. V. Polikarpov
Russian Federation
Assistant of the Department of Pharmacology, A.P. Nelyubin Institute of Pharmacy of Sechenov First Moscow State Medical University (Sechenov University).
2, Trubetskaya Str., Bldg 8, Moscow, Russia, 119991.
S. S. Sologova
Russian Federation
Candidate of Sciences (Biology), Associate Professor, Head of the educational part of the Department of Pharmacology, A.P. Nelyubin Institute of Pharmacy of Sechenov First Moscow State Medical University (Sechenov University).
2, Trubetskaya Str., Bldg 8, Moscow, Russia, 119991.
D. A. Kudlay
Russian Federation
Doctor of Sciences (Medicine), Professor of the Department of Pharmacology, A.P. Nelyubin Institute of Pharmacy of Sechenov First Moscow State Medical University (Sechenov University); Corresponding Member of the Russian Academy of Sciences.
2, Trubetskaya Str., Bldg 8, Moscow, Russia, 119991.
E. A. Smolyarchuk
Russian Federation
Candidate of Sciences (Medicine), Associate Professor of the Department of Pharmacology, A.P. Nelyubin Bauman Institute of Pharmacy of Sechenov First Moscow State Medical University (Sechenov University).
2, Trubetskaya Str., Bldg 8, Moscow, Russia, 119991.
References
1. Hasirci AS, Maldonado-Devincci AM, Beattie MC, O’Buckley TK, Morrow AL. Cellular GABAergic Neuroactive Steroid (3α,5α)-3-Hydroxy-Pregnan-20-One (3α,5α-THP) Immunostaining Levels Are Increased in the Ventral Tegmental Area of Human Alcohol Use Disorder Patients: A Postmortem Study. Alcohol Clin Exp Res. 2017;41(2):299–311. DOI: 10.1111/acer.13300
2. Shenoda BB. An Overview of the Mechanisms of Abnormal GABAergic Interneuronal Cortical Migration Associated with Prenatal Ethanol Exposure. Neurochem Res. 2017;42(5):1279–87. DOI: 10.1007/s11064-016-2169-5
3. Varodayan FP, Soni N, Bajo M, Luu G, Madamba SG, Schweitzer P, Parsons LH, Roberto M. Chronic ethanol exposure decreases CB1 receptor function at GABAergic synapses in the rat central amygdala. Addict Biol. 2016;21(4):788–801. DOI: 10.1111/adb.12256
4. Uhrig S, Vandael D, Marcantoni A, Dedic N, Bilbao A, Vogt MA, Hirth N, Broccoli L, Bernardi RE, Schönig K, Gass P, Bartsch D, Spanagel R, Deussing JM, Sommer WH, Carbone E, Hansson AC. Differential Roles for L-Type Calcium Channel Subtypes in Alcohol Dependence. Neuropsychopharmacology. 2017;42(5):1058–69. DOI: 10.1038/npp.2016.266
5. Alexandrovsky VN, Ostapenko YN, Goldfarb YS, Potskhveriya MM, Kareva MV. Acute Poisoning with Ethyl Alcohol (Alcoholic Coma). Russian Sklifosovsky Journal “Emergency Medical Care”. 2018;7(4):357–65. DOI: 10.23934/2223-9022-2018-7-4-357-365
6. Davis KM, Wu JY. Role of glutamatergic and GABAergic systems in alcoholism. J Biomed Sci. 2001;8(1):7–19. DOI: 10.1007/BF02255966
7. Tsuchiya H. Biphasic effects of acetaldehyde-biogenic amine condensation products on membrane fluidity. J Pharm Pharmacol. 2001;53(1):121–7. DOI: 10.1211/0022357011775109
8. Quintanilla ME, Rivera-Meza M, Berríos-Cárcamo P, Cassels BK, Herrera-Marschitz M, Israel Y. (R)-Salsolinol, a product of ethanol metabolism, stereospecifically induces behavioral sensitization and leads to excessive alcohol intake. Addict Biol. 2016;21(6):1063–71. DOI: 10.1111/adb.12268
9. Ito A, Jamal M, Ameno K, Tanaka N, Takakura A, Kawamoto T, Kitagawa K, Nakayama K, Matsumoto A, Miki T, Kinoshita H. Acetaldehyde administration induces salsolinol formation in vivo in the dorsal striatum of Aldh2-knockout and C57BL/6N mice. Neurosci Lett. 2018;685:50–4. DOI: 10.1016/j.neulet.2018.07.032
10. Marchitti SA, Deitrich RA, Vasiliou V. Neurotoxicity and Metabolism of the Catecholamine-Derived 3,4-Dihydroxyphenylacetaldehyde and 3,4-Dihydroxyphenylglycolaldehyde: The Role of Aldehyde Dehydrogenase.Pharmacological Reviews. 2007;59(2):125–50. DOI: 10.1124/pr.59.2.1
11. Bazovkina DV, Kondaurova EM, Tsybko AS, Kovetskaya AI, Ilchibaeva TV, Naumenko VS. Effect of Chronic Alcoholization on Expression of the Brain-Derived Neurotrophic Factor (BDNF) and Its Receptors in the Brain of Mice Genetically Predisposed to Depressive-Like Behavior. Molecular Biology. 2017;51(4)647–55. DOI: 10.7868/S002689841704005X
12. Barde YA, Edgar D, Thoenen H. Purification of a new neurotrophic factor from mammalian brain. EMBO J. 1982;1(5):549–53. DOI: 10.1002/j.1460-2075.1982.tb01207.x
13. Yang B, Ren Q, Zhang JC, Chen QX, Hashimoto K. Altered expression of BDNF, BDNF pro-peptide and their precursor proBDNF in brain and liver tissues from psychiatric disorders: rethinking the brain-liver axis. Transl Psychiatry. 2017;7(5):e1128. DOI: 10.1038/tp.2017.95
14. Dieni S, Matsumoto T, Dekkers M, Rauskolb S, Ionescu MS, Deogracias R, Gundelfinger ED, Kojima M, Nestel S, Frotscher M, Barde YA. BDNF and its pro-peptide are stored in presynaptic dense core vesicles in brain neurons. J Cell Biol. 2012;196(6):775–88. DOI: 10.1083/jcb.201201038
15. Guo J, Ji Y, Ding Y, Jiang W, Sun Y, Lu B, Nagappan G. BDNF pro-peptide regulates dendritic spines via caspase-3. Cell Death Dis. 2016;7(6):e2264. DOI: 10.1038/cddis.2016.166
16. Mizui T, Ishikawa Y, Kumanogoh H, Lume M, Matsumoto T, Hara T, Yamawaki S, Takahashi M, Shiosaka S, Itami C, Uegaki K, Saarma M, Kojima M. BDNF pro-peptide actions facilitate hippocampal LTD and are altered by the common BDNF polymorphism Val66Met. Proc Natl Acad Sci USA. 2015;112(23):3067–74. DOI: 10.1073/pnas.1422336112
17. Borodinova AA, Salozhin SV. Differences in the Biological Functions of BDNF and proBDNF in the Central Nervous System. Neuroscience and Behavioral Physiology. 2017;47(3):251–65. DOI: 10.1007/s11055-017-0391-5
18. Pang PT, Teng HK, Zaitsev E, Woo NT, Sakata K, Zhen S, Teng KK, Yung WH, Hempstead BL, Lu B. Cleavage of proBDNF by tPA/plasmin is essential for long-term hippocampal plasticity. Science. 2004;306(5695):487–91. DOI: 10.1126/science.1100135
19. Je HS, Yang F, Ji Y, Nagappan G, Hempstead BL, Lu B. Role of pro-brain-derived neurotrophic factor (proBDNF) to mature BDNF conversion in activity-dependent competition at developing neuromuscular synapses. Proc Natl Acad Sci U S A. 2012;109(39):15924–9. DOI: 10.1073/pnas.1207767109
20. Autry AE, Monteggia LM. Brain-derived neurotrophic factor and neuropsychiatric disorders. Pharmacol Rev. 2012;64(2):238–58. DOI: 10.1124/pr.111.005108
21. Weidner KL, Buenaventura DF, Chadman KK. Mice over-expressing BDNF in forebrain neurons develop an altered behavioral phenotype with age. Behav Brain Res. 2014;268:222–8. DOI: 10.1016/j.bbr.2014.04.025
22. Grünblatt E, Hupp E, Bambula M, Zehetmayer S, Jungwirth S, Tragl KH, Fischer P, Riederer P. Association study of BDNF and CNTF polymorphism to depression in non-demented subjects of the “VITA” study. J Affect Disord. 2006;96(1-2):111–6. DOI: 10.1016/j.jad.2006.05.008
23. Hwang JP, Tsai SJ, Hong CJ, Yang CH, Lirng JF, Yang YM. The Val66Met polymorphism of the brain-derived neurotrophic-factor gene is associated with geriatric depression. Neurobiol Aging. 2006;27(12):1834–7. DOI: 10.1016/j.neurobiolaging.2005.10.013
24. Shen T, You Y, Joseph C, Mirzaei M, Klistorner A, Graham SL, Gupta V. BDNF Polymorphism: A Review of Its Diagnostic and Clinical Relevance in Neurodegenerative Disorders. Aging Dis. 2018;9(3):523–36. DOI: 10.14336/AD.2017.0717
25. Lim YY, Hassenstab J, Cruchaga C, Goate A, Fagan AM, Benzinger TL, Maruff P, Snyder PJ, Masters CL, Allegri R, Chhatwal J, Farlow MR, Graff-Radford NR, Laske C, Levin J, McDade E, Ringman JM, Rossor M, Salloway S, Schofield PR, Holtzman DM, Morris JC, Bateman RJ; Dominantly Inherited Alzheimer Network. BDNF Val66Met moderates memory impairment, hippocampal function and tau in preclinical autosomal dominant Alzheimer’s disease. Brain. 2016;139(Pt 10):2766–77. DOI: 10.1093/brain/aww200
26. Borroni B, Grassi M, Archetti S, Costanzi C, Bianchi M, Caimi L, Caltagirone C, Di Luca M, Padovani A. BDNF genetic variations increase the risk of Alzheimer’s disease-related depression. J Alzheimers Dis. 2009;18(4):867–75. DOI: 10.3233/JAD-2009-1191
27. Lim YY, Hassenstab J, Goate A, Fagan AM, Benzinger TLS, Cruchaga C, McDade E, Chhatwal J, Levin J, Farlow MR, Graff-Radford NR, Laske C, Masters CL, Salloway S, Schofield P, Morris JC, Maruff P, Bateman RJ; Dominantly Inherited Alzheimer Network. Effect of BDNFVal66Met on disease markers in dominantly inherited Alzheimer’s disease. Ann Neurol. 2018;84(3):424–35. DOI: 10.1002/ana.25299
28. Zhang H, Ozbay F, Lappalainen J, Kranzler HR, van Dyck CH, Charney DS, Price LH, Southwick S, Yang BZ, Rasmussen A, Gelernter J. Brain derived neurotrophic factor (BDNF) gene variants and Alzheimer’s disease, affective disorders, posttraumatic stress disorder, schizophrenia, and substance dependence. Am J Med Genet B Neuropsychiatr Genet. 2006;141B(4):387–93. DOI: 10.1002/ajmg.b.30332
29. Lee BG, Anastasia A, Hempstead BL, Lee FS, Blendy JA. Effects of the BDNF Val66Met Polymorphism on Anxiety-Like Behavior Following Nicotine Withdrawal in Mice. Nicotine Tob Res. 2015;17(12):1428–35. DOI: 10.1093/ntr/ntv047
30. Zhang XY, Chen DC, Xiu MH, Luo X, Zuo L, Haile CN, Kosten TA, Kosten TR. BDNF Val66Met variant and smoking in a Chinese population. PLoS One. 2012;7(12):e53295. DOI: 10.1371/journal.pone.0053295
31. Phillips TJ, Kamens HM, Wheeler JM. Behavioral genetic contributions to the study of addiction-related amphetamine effects. Neurosci Biobehav Rev. 2008;32(4):707–59. DOI: 10.1016/j.neubiorev.2007.10.008
32. Huret JL, Ahmad M, Arsaban M, Bernheim A, Cigna J, Desangles F, Guignard JC, Jacquemot-Perbal MC, Labarussias M, Leberre V, Malo A, Morel-Pair C, Mossafa H, Potier JC, Texier G, Viguié F, Yau Chun Wan-Senon S, Zasadzinski A, Dessen P. Atlas of genetics and cytogenetics in oncology and haematology in 2013. Nucleic Acids Res. 2013;41(Database issue):920–24. DOI: 10.1093/nar/gks1082
33. Ohira K, Hayashi M. A new aspect of the TrkB signaling pathway in neural plasticity. Curr Neuropharmacol. 2009;7(4):276–85. DOI: 10.2174/157015909790031210
34. Ohira K, Kumanogoh H, Sahara Y, Homma KJ, Hirai H, Nakamura S, Hayashi M. A truncated tropomyosin-related kinase B receptor, T1, regulates glial cell morphology via Rho GDP dissociation inhibitor 1. J Neurosci. 2005;25(6):1343–53. DOI: 10.1523/JNEUROSCI.4436-04.2005
35. Luberg K, Wong J, Weickert CS, Timmusk T. Human TrkB gene: novel alternative transcripts, protein isoforms and expression pattern in the prefrontal cerebral cortex during postnatal development. J Neurochem. 2010;113(4):952–64. DOI: 10.1111/j.1471-4159.2010.06662.x
36. Wong J. Regulation of a TrkB Alternative Transcript by microRNAs. Dement Geriatr Cogn Dis Extra. 2014;4(3):364–74. DOI: 10.1159/000365917
37. Shen J, Maruyama IN. Brain-derived neurotrophic factor receptor TrkB exists as a preformed dimer in living cells. J Mol Signal. 2012;7(1):2. DOI: 10.1186/1750-2187-7-2
38. Diniz CRAF, Casarotto PC, Fred SM, Biojone C, Castrén E, Joca SRL. Antidepressant-like effect of losartan involves TRKB transactivation from angiotensin receptor type 2 (AGTR2) and recruitment of FYN. Neuropharmacology. 2018;135:163–71. DOI: 10.1016/j.neuropharm.2018.03.011
39. Philo J, Talvenheimo J, Wen J, Rosenfeld R, Welcher A, Arakawa T. Interactions of neurotrophin-3 (NT-3), brain-derived neurotrophic factor (BDNF), and the NT-3.BDNF heterodimer with the extracellular domains of the TrkB and TrkC receptors. J Biol Chem. 19941;269(45):27840–6.
40. Jang SW, Liu X, Chan CB, Weinshenker D, Hall RA, Xiao G, Ye K. Amitriptyline is a TrkA and TrkB receptor agonist that promotes TrkA/TrkB heterodimerization and has potent neurotrophic activity. Chem Biol. 2009;16(6):644–56. DOI: 10.1016/j.chembiol.2009.05.010
41. Fenner BM. Truncated TrkB: beyond a dominant negative receptor. Cytokine Growth Factor Rev. 2012;23(1-2):15–24. DOI: 10.1016/j.cytogfr.2012.01.002
42. Vidaurre Ó, Gascón S, Deogracias R, Cuadrado E, Montaner J, Rodríguez-Peña Á, Díaz-Guerra M. Imbalance of neurotrophin receptor isoforms TrkB-FL/TrkB-T1 induces neuronal death in excitotoxicity. Cell Death Dis. 2012;3;e256. DOI: 10.1038/cddis.2011.143
43. Carim-Todd L, Bath KG, Fulgenzi G, Yanpallewar S, Jing D, Barrick CA, Becker J, Buckley H, Dorsey SG, Lee FS, Tessarollo L. Endogenous truncated TrkB.T1 receptor regulates neuronal complexity and TrkB kinase receptor function in vivo. J Neurosci. 2009;29(3):678–85. DOI: 10.1523/JNEUROSCI.5060-08.2009
44. Torres CM, Siebert M, Bock H, Mota SM, Krammer BR, Duarte JÁ, Bragatti JA, Castan JU, de Castro LA, Saraiva-Pereira ML, Bianchin MM. NTRK2 (TrkB gene) variants and temporal lobe epilepsy: A genetic association study. Epilepsy Res. 2017;137:1–8. DOI: 10.1016/j.eplepsyres.2017.08.010
45. Torres CM, Siebert M, Bock H, Mota SM, Castan JU, Scornavacca F, de Castro LA, Saraiva-Pereira ML, Bianchin MM. Tyrosine receptor kinase B gene variants (NTRK2 variants) are associated with depressive disorders in temporal lobe epilepsy. Epilepsy Behav. 2017;71(Pt A):65–72. DOI: 10.1016/j.yebeh.2017.03.030
46. Deflesselle E, Colle R, Rigal L, David DJ, Vievard A, Martin S, Becquemont L, Verstuyft C, Corruble E. The TRKB rs2289656 genetic polymorphism is associated with acute suicide attempts in depressed patients: A transversal case control study. PLoS One. 2018;13(10):e0205648. DOI: 10.1371/journal.pone.0205648
47. Harada T, Yatabe Y, Takeshita M, Koga T, Yano T, Wang Y, Giaccone G. Role and relevance of TrkB mutations and expression in non-small cell lung cancer. Clin Cancer Res. 2011;17(9):2638–45. DOI: 10.1158/1078-0432.CCR-10-3034
48. Deihimi S, Lev A, Slifker M, Shagisultanova E, Xu Q, Jung K, Vijayvergia N, Ross EA, Xiu J, Swensen J, Gatalica Z, Andrake M, Dunbrack RL, El-Deiry WS. BRCA2, EGFR, and NTRK mutations in mismatch repair-deficient colorectal cancers with MSH2 or MLH1 mutations. Oncotarget. 2017;8(25):39945–62. DOI: 10.18632/oncotarget.18098
49. Wislet S, Vandervelden G, Rogister B. From Neural Crest Development to Cancer and Vice Versa: How p75NTR and (Pro)neurotrophins Could Act on Cell Migration and Invasion? Front Mol Neurosci. 2018;11:244. DOI: 10.3389/fnmol.2018.00244
50. Hempstead BL. The many faces of p75NTR. Curr Opin Neurobiol. 2002;12(3):260–7. DOI: 10.1016/s0959-4388(02)00321-5
51. Chittka A, Arevalo JC, Rodriguez-Guzman M, Pérez P, Chao MV, Sendtner M. The p75NTR-interacting protein SC1 inhibits cell cycle progression by transcriptional repression of cyclin E. J Cell Biol. 2004;164(7):985–96. DOI: 10.1083/jcb.200301106
52. Tong X, Xie D, Roth W, Reed J, Koeffler HP. NADE (p75NTR-associated cell death executor) suppresses cellular growth in vivo. Int J Oncol. 2003;22(6):1357–62.
53. Salehi AH, Roux PP, Kubu CJ, Zeindler C, Bhakar A, Tannis LL, Verdi JM, Barker PA. NRAGE, a novel MAGE protein, interacts with the p75 neurotrophin receptor and facilitates nerve growth factor-dependent apoptosis. Neuron. 2000;27(2):279–88. DOI: 10.1016/s0896-6273(00)00036-2
54. Coulson EJ, Reid K, Shipham KM, Morley S, Kilpatrick TJ, Bartlett PF. The role of neurotransmission and the Chopper domain in p75 neurotrophin receptor death signaling. Prog Brain Res. 2004;146:41–62. DOI: 10.1016/S0079-6123(03)46003-2
55. Lewin GR, Mendell LM. Nerve growth factor and nociception. Trends Neurosci. 1993;16(9):353–9. DOI: 10.1016/0166-2236(93)90092-z
56. Restivo G, Diener J, Cheng PF, Kiowski G, Bonalli M, Biedermann T, Reichmann E, Levesque MP, Dummer R, Sommer L. low neurotrophin receptor CD271 regulates phenotype switching in melanoma. Nat Commun. 2017;8(1):1988. DOI: 10.1038/s41467-017-01573-6. Erratum in: Nat Commun. 2018;9(1):314. DOI: 10.1038/s41467-018-02850-8
57. Schmieg N, Thomas C, Yabe A, Lynch DS, Iglesias T, Chakravarty P, Schiavo G. Novel Kidins220/ARMS Splice Isoforms: Potential Specific Regulators of Neuronal and Cardiovascular Development. PLoS One. 2015;10(6):e0129944. DOI: 10.1371/journal.pone.0129944
58. Faulkner S, Jobling P, Rowe CW, Rodrigues Oliveira SM, Roselli S, Thorne RF, Oldmeadow C, Attia J, Jiang CC, Zhang XD, Walker MM, Hondermarck H. Neurotrophin Receptors TrkA, p75NTR, and Sortilin Are Increased and Targetable in Thyroid Cancer. Am J Pathol. 2018;188(1):229–241. DOI: 10.1016/j.ajpath.2017.09.008
59. Liao YH, Hsu SM, Yang HL, Tsai MS, Huang PH. Upregulated ankyrin repeat-rich membrane spanning protein contributes to tumour progression in cutaneous melanoma. Br J Cancer. 2011;104(6):982–8. DOI: 10.1038/bjc.2011
60. De la Cruz-Morcillo MA, Berger J, Sánchez-Prieto R, Saada S, Naves T, Guillaudeau A, Perraud A, Sindou P, Lacroix A, Descazeaud A, Lalloué F, Jauberteau MO. p75 neurotrophin receptor and pro-BDNF promote cell survival and migration in clear cell renal cell carcinoma. Oncotarget. 2016;7(23):34480–97. DOI: 10.18632/oncotarget.8911
61. Fei D, Huang T, Krimm RF. The neurotrophin receptor p75 regulates gustatory axon branching and promotes innervation of the tongue during development. Neural Dev. 2014;9:15. DOI: 10.1186/1749-8104-9-15
62. Sato T, Doi K, Taniguchi M, Yamashita T, Kubo T, Tohyama M. Progressive hearing loss in mice carrying a mutation in the p75 gene. Brain Res. 2006;1091(1):224–34. DOI: 10.1016/j.brainres.2005.12.104
63. Sánchez E, Bergareche A, Krebs CE, Gorostidi A, Makarov V, Ruiz-Martinez J, Chorny A, Lopez de Munain A, Marti-Masso JF, Paisán-Ruiz C. SORT1 Mutation Resulting in Sortilin Deficiency and p75(NTR) Upregulation in a Family With Essential Tremor. ASN Neuro. 2015;7(4):1759091415598290. DOI: 10.1177/1759091415598290
64. Silva-Peña D, García-Marchena N, Alén F, Araos P, Rivera P, Vargas A, García-Fernández MI, Martín-Velasco AI, Villanúa MÁ, Castilla-Ortega E, Santín L, Pavón FJ, Serrano A, Rubio G, Rodríguez de Fonseca F, Suárez J. Alcohol-induced cognitive deficits are associated with decreased circulating levels of the neurotrophin BDNF in humans and rats. Addict Biol. 2019;24(5):1019–33. DOI: 10.1111/adb.12668
65. Lin G, Zhang H, Sun F, Lu Z, Reed-Maldonado A, Lee YC, Wang G, Banie L, Lue TF. Brain-derived neurotrophic factor promotes nerve regeneration by activating the JAK/STAT pathway in Schwann cells. Transl Androl Urol. 2016;5(2):167–75. DOI: 10.21037/tau.2016.02.03
66. Donnelly CR, Gabreski NA, Suh EB, Chowdhury M, Pierchala BA. Non-canonical Ret signaling augments p75-mediated cell death in developing sympathetic neurons. J Cell Biol. 2018;217(9):3237–53. DOI: 10.1083/jcb.201703120
67. Shojaei S, Ghavami S, Panjehshahin MR, Owji AA. Effects of Ethanol on the Expression Level of Various BDNF mRNA Isoforms and Their Encoded Protein in the Hippocampus of Adult and Embryonic Rats. Int J Mol Sci. 2015;16(12):30422–37. DOI: 10.3390/ijms161226242
68. Nair B, Wong-Riley MT. Transcriptional Regulation of Brain-derived Neurotrophic Factor Coding Exon IX: ROLE OF NUCLEAR RESPIRATORY FACTOR 2. J Biol Chem. 2016;291(43):22583–93. DOI: 10.1074/jbc.M116.742304
69. Briones TL, Woods J. Chronic binge-like alcohol consumption in adolescence causes depression-like symptoms possibly mediated by the effects of BDNF on neurogenesis. Neuroscience. 2013;254:324–34. DOI: 10.1016/j.neuroscience.2013.09.031
70. Heberlein A, Muschler M, Wilhelm J, Frieling H, Lenz B, Gröschl M, Kornhuber J, Bleich S, Hillemacher T. BDNF and GDNF serum levels in alcohol-dependent patients during withdrawal. Prog Neuropsychopharmacol Biol Psychiatry. 2010;34(6):1060–4. DOI: 10.1016/j.pnpbp.2010.05.025
71. Huang MC, Chen CH, Chen CH, Liu SC, Ho CJ, Shen WW, Leu SJ. Alterations of serum brain-derived neurotrophic factor levels in early alcohol withdrawal. Alcohol Alcohol. 2008;43(3):241–5. DOI: 10.1093/alcalc/agm172
72. Schunck RV, Torres IL, Laste G, de Souza A, Macedo IC, Valle MT, Salomón JL, Moreira S, Kuo J, Arbo MD, Dallegrave E, Leal MB. Protracted alcohol abstinence induces analgesia in rats: Possible relationships with BDNF and interleukin-10. Pharmacol Biochem Behav. 2015;135:64–9. DOI: 10.1016/j.pbb.2015.05.011
73. Hatami H, Oryan S, Semnanian S, Kazemi B, Bandepour M, Ahmadiani A. Alterations of BDNF and NT-3 genes expression in the nucleus paragigantocellularis during morphine dependency and withdrawal. Neuropeptides. 2007;41(5):321–28. DOI: 10.1016/j.npep.2007.04.007
74. Filip M, Faron-Górecka A, Kuśmider M, Gołda A, Frankowska M, Dziedzicka-Wasylewska M. Alterations in BDNF and trkB mRNAs following acute or sensitizing cocaine treatments and withdrawal. Brain Res. 2006;1071(1):218–25. DOI: 10.1016/j.brainres.2005.11.099
75. Roni MA, Rahman S. The effects of lobeline on nicotine withdrawal-induced depression-like behavior in mice. Psychopharmacology (Berl). 2014;231(15):2989–98. DOI: 10.1007/s00213-014-3472-y
76. Sasi M, Vignoli B, Canossa M, Blum R. Neurobiology of local and intercellular BDNF signaling. Pflugers Arch. 2017;469(5-6):593–610. DOI: 10.1007/s00424-017-1964-4. Erratum in: Pflugers Arch. 2017;469(5-6):611. DOI: 10.1007/s00424-017-1971-5
77. Park H, Poo MM. Neurotrophin regulation of neural circuit development and function. Nat Rev Neurosci. 2013;14(1):7–23. DOI: 10.1038/nrn3379
78. Conner JM, Lauterborn JC, Yan Q, Gall CM, Varon S. Distribution of brain-derived neurotrophic factor (BDNF) protein and mRNA in the normal adult rat CNS: evidence for anterograde axonal transport. J Neurosci. 1997;17(7):2295–313. DOI: 10.1523/JNEUROSCI.17-07-02295.1997
79. Hing B, Sathyaputri L, Potash JB. A comprehensive review of genetic and epigenetic mechanisms that regulate BDNF expression and function with relevance to major depressive disorder. Am J Med Genet B Neuropsychiatr Genet. 2018;177(2):143–67. DOI: 10.1002/ajmg.b.32616
80. Bai YY, Ruan CS, Yang CR, Li JY, Kang ZL, Zhou L, Liu D, Zeng YQ, Wang TH, Tian CF, Liao H, Bobrovskaya L, Zhou XF. ProBDNF Signaling Regulates Depression-Like Behaviors in Rodents under Chronic Stress. Neuropsychopharmacology. 2016;41(12):2882–92. DOI: 10.1038/npp.2016.100
81. Aicardi G, Argilli E, Cappello S, Santi S, Riccio M, Thoenen H, Canossa M. Induction of long-term potentiation and depression is reflected by corresponding changes in secretion of endogenous brain-derived neurotrophic factor. Proc Natl Acad Sci USA. 2004;101(44):15788–92. DOI: 10.1073/pnas.0406960101
82. Raivio N, Miettinen P, Kiianmaa K. Innate BDNF expression is associated with ethanol intake in alcohol-preferring AA and alcohol-avoiding ANA rats. Brain Res. 2014;1579:74–83. DOI: 10.1016/j.brainres.2014.07.006
83. Truitt WA, Hauser SR, Deehan GA Jr, Toalston JE, Wilden JA, Bell RL, McBride WJ, Rodd ZA. Ethanol and nicotine interaction within the posterior ventral tegmental area in male and female alcohol-preferring rats: evidence of synergy and differential gene activation in the nucleus accumbens shell. Psychopharmacology (Berl). 2015;232(3):639–49. DOI: 10.1007/s00213-014-3702-3
84. Liu X, Obianyo O, Chan CB, Huang J, Xue S, Yang JJ, Zeng F, Goodman M, Ye K. Biochemical and biophysical investigation of the brain-derived neurotrophic factor mimetic 7,8-dihydroxyflavone in the binding and activation of the TrkB receptor. J Biol Chem. 2014;289(40):27571–84. DOI: 10.1074/jbc.M114.562561
85. Wu CH, Hung TH, Chen CC, Ke CH, Lee CY, Wang PY, Chen SF. Post-injury treatment with 7,8-dihydroxyflavone, a TrkB receptor agonist, protects against experimental traumatic brain injury via PI3K/Akt signaling. PLoS One. 2014;9(11):e113397. DOI: 10.1371/journal.pone.0113397
86. Uluc K, Kendigelen P, Fidan E, Zhang L, Chanana V, Kintner D, Akture E, Song C, Ye K, Sun D, Ferrazzano P, Cengiz P. TrkB receptor agonist 7, 8 dihydroxyflavone triggers profound gender- dependent neuroprotection in mice after perinatal hypoxia and ischemia. CNS Neurol Disord Drug Targets. 2013;12(3):360–70. DOI: 10.2174/18715273113129990061
87. Zhang Z, Liu X, Schroeder JP, Chan CB, Song M, Yu SP, Weinshenker D, Ye K. 7,8-dihydroxyflavone prevents synaptic loss and memory deficits in a mouse model of Alzheimer’s disease. Neuropsychopharmacology. 2014;39(3):638–50. DOI: 10.1038/npp.2013.243
88. Chen L, Gao X, Zhao S, Hu W, Chen J. The Small-Molecule TrkB Agonist 7, 8-Dihydroxyflavone Decreases Hippocampal Newborn Neuron Death After Traumatic Brain Injury. J Neuropathol Exp Neurol. 2015;74(6):557–67. DOI: 10.1097/NEN.0000000000000199
89. Nie S, Ma K, Sun M, Lee M, Tan Y, Chen G, Zhang Z, Zhang Z, Cao X. 7,8-Dihydroxyflavone Protects Nigrostriatal Dopaminergic Neurons from Rotenone-Induced Neurotoxicity in Rodents. Parkinsons Dis. 2019;2019:9193534. DOI: 10.1155/2019/9193534
90. Liu X, Qi Q, Xiao G, Li J, Luo HR, Ye K. O-methylated metabolite of 7,8-dihydroxyflavone activates TrkB receptor and displays antidepressant activity. Pharmacology. 2013;91(3-4):185–200. DOI: 10.1159/000346920
91. Chen C, Wang Z, Zhang Z, Liu X, Kang SS, Zhang Y, Ye K. The prodrug of 7,8-dihydroxyflavone development and therapeutic efficacy for treating Alzheimer’s disease. Proc Natl Acad Sci USA. 2018;115(3):578–83. DOI: 10.1073/pnas.1718683115
92. US Patent 2015/0274692 A1. 7,8-dihydoxyflavone and 7,8-substituted flavone derivatives, compositions, and methods related thereto; Keqiang Ye, inventor.
93. Liu C, Chan CB, Ye K. 7,8-dihydroxyflavone, a small molecular TrkB agonist, is useful for treating various BDNF-implicated human disorders. Transl Neurodegener. 2016;5:2. DOI: 10.1186/s40035-015-0048-7
94. Massa SM, Yang T, Xie Y, Shi J, Bilgen M, Joyce JN, Nehama D, Rajadas J, Longo FM. Small molecule BDNF mimetics activate TrkB signaling and prevent neuronal degeneration in rodents. J Clin Invest. 2010;120(5):1774–85. DOI: 10.1172/JCI41356
95. Pandey SC. A Critical Role of Brain-Derived Neurotrophic Factor in Alcohol Consumption. Biol Psychiatry. 2016;79(6):427–9. DOI: 10.1016/j.biopsych.2015.12.020
96. Warnault V, Darcq E, Morisot N, Phamluong K, Wilbrecht L, Massa SM, Longo FM, Ron D. The BDNF Valine 68 to Methionine Polymorphism Increases Compulsive Alcohol Drinking in Mice That Is Reversed by Tropomyosin Receptor Kinase B Activation. Biol Psychiatry. 2016;79(6):463–73. DOI: 10.1016/j.biopsych.2015.06.007
97. Zheng X, Chen F, Zheng T, Huang F, Chen J, Tu W. Amitriptyline Activates TrkA to Aid Neuronal Growth and Attenuate Anesthesia-Induced Neurodegeneration in Rat Dorsal Root Ganglion Neurons. Medicine (Baltimore). 2016;95(18):e3559. DOI: 10.1097/MD.0000000000003559
98. Altintoprak AE, Zorlu N, Coskunol H, Akdeniz F, Kitapcioglu G. Effectiveness and tolerability of mirtazapine and amitriptyline in alcoholic patients with co-morbid depressive disorder: a randomized, double-blind study. Hum Psychopharmacol. 2008;23(4):313–9. DOI: 10.1002/hup.935
99. Bennett JP Jr, O’Brien LC, Brohawn DG. Pharmacological properties of microneurotrophin drugs developed for treatment of amyotrophic lateral sclerosis. Biochem Pharmacol. 2016;117:68–77. DOI: 10.1016/j.bcp.2016.08.001
100. Botsakis K, Mourtzi T, Panagiotakopoulou V, Vreka M, Stathopoulos GT, Pediaditakis I, Charalampopoulos I, Gravanis A, Delis F, Antoniou K, Zisimopoulos D, Georgiou CD, Panagopoulos NT, Matsokis N, Angelatou F. BNN-20, a synthetic microneurotrophin, strongly protects dopaminergic neurons in the “weaver” mouse, a genetic model of dopamine-denervation, acting through the TrkB neurotrophin receptor. Neuropharmacology. 2017;121:140–57. DOI: 10.1016/j.neuropharm.2017.04.04
101. Nie S, Xu Y, Chen G, Ma K, Han C, Guo Z, Zhang Z, Ye K, Cao X. Small molecule TrkB agonist deoxygedunin protects nigrostriatal dopaminergic neurons from 6-OHDA and MPTP induced neurotoxicity in rodents. Neuropharmacology. 2015;99:448–58. DOI: 10.1016/j.neuropharm.2015.08.016
102. English AW, Liu K, Nicolini JM, Mulligan AM, Ye K. Small-molecule trkB agonists promote axon regeneration in cut peripheral nerves. Proc Natl Acad Sci USA. 2013;110(40):16217–22. DOI: 10.1073/pnas.1303646110
103. Bell RG. Alcohol dependence: disulfiram implants. Can Med Assoc J. 1977;116(12):1333–5.
104. Corbin WR, Cronce JM. Effects of alcohol, initial gambling outcomes, impulsivity, and gambling cognitions on gambling behavior using a video poker task. Exp Clin Psychopharmacol. 2017;25(3):175–85. DOI: 10.1037/pha0000125
105. Sayette MA. The effects of alcohol on emotion in social drinkers. Behav Res Ther. 2017;88:76–89. DOI: 10.1016/j.brat.2016.06.005
106. Westman JG, Bujarski S, Ray LA. Impulsivity Moderates Subjective Responses to Alcohol in Alcohol-Dependent Individuals. Alcohol Alcohol. 2017;52(2):249–55. DOI: 10.1093/alcalc/agw096
107. Steele CM, Southwick L. Alcohol and social behavior I: The psychology of drunken excess. J Pers Soc Psychol. 1985;48(1):18–34. DOI: 10.1037//0022-3514.48.1.18
108. Suchankova P, Yan J, Schwandt ML, Stangl BL, Jerlhag E, Engel JA, Hodgkinson CA, Ramchandani VA, Leggio L. The Leu72Met Polymorphism of the Prepro-ghrelin Gene is Associated With Alcohol Consumption and Subjective Responses to Alcohol: Preliminary Findings. Alcohol Alcohol. 2017;52(4):425–30. DOI: 10.1093/alcalc/agx021
109. Palmisano M, Pandey SC. Epigenetic mechanisms of alcoholism and stress-related disorders. Alcohol. 2017;60:7–18. DOI: 10.1016/j.alcohol.2017.01.001
110. Heberlein A, Büscher P, Schuster R, Kleimann A, Lichtinghagen R, Rhein M, Kornhuber J, Bleich S, Frieling H, Hillemacher T. Do changes in the BDNF promoter methylation indicate the risk of alcohol relapse? Eur Neuropsychopharmacol. 2015;25(11):1892–7. DOI: 10.1016/j.euroneuro.2015.08.018
111. Dalvie S, Stein DJ, Koenen K, Cardenas V, Cuzen NL, Ramesar R, Fein G, Brooks SJ. The BDNF p.Val66Met polymorphism, childhood trauma, and brain volumes in adolescents with alcohol abuse. BMC Psychiatry. 2014;14:328. DOI: 10.1186/s12888-014-0328-2
112. Mahnke AH, Miranda RC, Homanics GE. Epigenetic mediators and consequences of excessive alcohol consumption. Alcohol. 2017;60:1–6. DOI: 10.1016/j.alcohol.2017.02.357
113. Kolik LG, Nadorova AV, Grigorevskikh EM, Sazonova NM, Gudasheva TA. Anxiolytic action of dipeptide mimetics of the 2nd BDNF loop in “adult” animals. Bulletin of Experimental Biology and Medicine. 2024;177(4):466–70. DOI: 10.47056/0365-9615-2024-177-4-466-470
114. Kolik LG, Nadorova AV, Grigorevskikh EM, Gudasheva TA. Seredenin SB. Experimental study of the anxiolytic activity of low-molecular-mass mimetics of the first, second and fourth loops of brain derived neurotrophic factor. Éksperimentalnaya i Klinicheskaya Farmakologiya. 2020;83(11):3–7. DOI: 10.30906/0869-2092-2020-83-11-3-7
115. Nadorova AV, Grigorevskikh EM, Tarasiuk AV, Sazonova NM, Kolik LG. Assessment of pharmacological safety of a new dipeptide mimetic of the 2nd loop of BDNF when co-administered with ethanol. Pharmacokinetics and Pharmacodynamics. 2022;(4):55–61. DOI: 10.37489/2587-7836-2022-4-55-61
116. Markin PA, Moskaleva NE, Lebedeva SA, Kozin SV, Grigorevskikh EM, Kolik LG, Gudasheva TA, Appolonova SA. Pharmacokinetic and neurotransmitter metabolomics study of GTS-201, a dipeptide mimetic of the brain-derived neurotropic factor in rats. Journal of Pharmaceutical and Biomedical Analysis. 2023;223:115125. DOI: 10.1016/j.jpba.2022.115125
Review
For citations:
Khalimanov M.S., Grigorevskikh E.M., Zavadich K.A., Sologov S.I., Traschenkova D.A., Tatzhikova K.A., Polikarpov E.V., Sologova S.S., Kudlay D.A., Smolyarchuk E.A. Brain-derived neurotrophic factor as a target for the search of anti-addiction drugs. Pharmacy & Pharmacology. 2025;13(1):4-19. https://doi.org/10.19163/2307-9266-2025-13-1-4-19