SARS-CoV-2 Main Protease inhibitors in trace constituents from Algerian herbal medicines using in silico approaches
https://doi.org/10.19163/2307-9266-2025-13-1-56-66
Abstract
Since antiquity, еssential oils are considered as a source of bioactive molecules. Some of them have been shown to possess antiviral activities against various virus strains, among them SARS-CoV-2.
The aim of this study is the search for compounds, among minor components extracted from different aromatic and medicinal plants collected from Algerian pharmacopeia, which may posses possible COVID-19 antiviral activities, by molecular docking in the active site of SARS-CoV-2 main protease.
Materials and methods. Thus, in this study 66 compounds which are declared at traces amount by authors in the composition of the essential oils, and selected from 9 Algerian medicinal plants were docked in the active site of SARS-CoV-2 main protease as possible inhibitors of SARS-CoV-2.
Results. The obtained result shows that only Cembrene constitutes the structure with the best affinity in the binding site of the enzyme with a Bioavailability Score “ABS” equal to 0.55 which confirm non Lipinski violations. However, the compound is predicted not orally bioavailable, because too lipophilic (lipophilicity: Log Po/w (XLOGP3)=6.04>+5.0) and less polar (polarity: TPSA=0.00Ų<20 Ų), and it is also predicted as not absorbed, not brain penetrant and not subject to active efflux from the CNS or to the gastrointestinal lumen.
Conclusion. This result deserves to be more detailed and either confirmed or invalidated with a view to better and rational exploitation.
Keywords
About the Authors
B. YabrirAlgeria
Doctor of Sciences (Biology), Professor, Ziane Achour University of Djelfa, Algeria.
Cité 05 Juillet Route Moudjbara, BP:3117 Djelfa, 17000, Algeria.
A. Belhassan
Morocco
Doctor, Faculty of Sciences, Moulay Ismail University of Meknes, Morocco.
2 Marjane, BP:298 Meknes, Morocco.
T. Lakhlifi
Morocco
Full Professor, Laboratory of Molecular Chemistry and Natural Substances, Faculty of Sciences, Moulay Ismail University of Meknes, Morocco.
2 Marjane, BP:298 Meknes, Morocco.
G. S. Moran
Chile
Professor of Chemistry and Science Methodology, Facultad de Ciencias Quimicas. Investigador Extramural, Universidad de Concepcion, Concepcion, Chile.
219 Edmundo Larenas, Concepción, Bío Bío, Chile, 4070409
M. Bouachrine
Morocco
Full Professor, Laboratory of Molecular Chemistry and Natural Substances, Faculty of Sciences, Moulay Ismail University of Meknes, Morocco.
2 Marjane, BP:298 Meknes, Morocco.
L. G. Candia
Chile
Doctor of Science, Major in Chemistry, Departamento de Química Ambiental, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Concepción, Chile.
2850 Alonso de Ribera Ave., Concepción, Chile.
References
1. Wang Q, Zhang Y, Wu L, Niu S, Song C, Zhang Z, Lu G, Qiao C, Hu Y, Yuen K-Y, Wang Q, Zhou H, Yan J, Qi J. Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell. 2020;181(4):894–904. DOI: 10.1016/j.cell.2020.03.045
2. Dhama K, Khan S, Tiwari R, Sircar S, Bhat S, Malik YS, Karam PS, Chaicumpa W, Bonilla-Aldana DK, Rodriguez-Morales AJ. Coronavirus Disease 2019–COVID-19. Clin Microbiol Rev. 2020;33(4):e00028-20. DOI: 10.1128/CMR.00028-20
3. Bonny V, Maillardb A, Mousseauxc C, Placais L, Richie Q. COVID-19: physiopathologie d’une maladie à plusieurs visages. Rev Med Interne. 2020;41(6):375–89. DOI: 10.1016/j.revmed.2020.05.003
4. Meo SA, Zaidi SZA, Shang T, Zhang JY, Al-Khlaiwi T, Bukhari IA, Akram J, Klonoff DC. Biological, molecular and pharmacological characteristics of chloroquine, hydroxychloroquine, convalescent plasma, and remdesivir for COVID-19 pandemic: A comparative analysis. J King Saud Univ Sci. 2020;32(7):3159–66. DOI: 10.1016/j.jksus.2020.09.002
5. Wang C, Wang Z, Wang G, Lau J Y-N, Zhang K, Li W. COVID-19 in early 2021: current status and looking forward. Sig Transduct Target Ther. 2021;6:114. DOI: 10.1038/s41392-021-00527-1
6. Towler P, Staker B, Prasad SG, Menon S, Tang J, Parsons T, Ryan D, Fisher M, Williams D, Dales NA, Patane MA, Pantoliano MW. ACE2 X-ray structures reveal a large hinge-bending motion important for inhibitor binding and catalysis. J Biol Chem. 2004;279(17):17996–8007. DOI: 10.1074/jbc.M311191200
7. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh C-L, Abiona O, Graham B, McLellan JS. CryoEM structure of the 2019-nCoV spike in the perfusion conformation. Science. 2020;367:1260–3. DOI: 10.1126/science.abb2507
8. de Wit E, van Doremalen NV, Falzarano D, Munster VJ. SARS and MERS: recent insights into emerging coronaviruses. Nat Rev Microbiol. 2016;14(8):523–34. DOI: 10.1038/nrmicro.2016.81
9. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, Mueller MA, Drosten C, Poehlmann S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271–80.e8. DOI: 10.1016/j.cell.2020.02.052
10. Choy K-T, Wong Y-LA, Kaewpreedee P, Sia S-F, Chen D, Yan Hui KP, Wing Chu DK, Wai Chan MC, Pak-Hang Cheung P, Huang X, Peiris M, Yen HL. Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro. Antiviral Res. 2020;178:104786. DOI: 10.1016/j.antiviral.2020.104786
11. Savarino A, Di Trani L, Donatelli I, Cauda R, Cassone A. New insights into the antiviral effects of chloroquine. Lancet Infect Dis. 2006;6(2):67–9. DOI: 10.1016/S1473-3099(06)70361-9
12. Dorward JK, Gbinigie K. Lopinavir/Ritonavir: A Rapid Review of Effectiveness in COVID-19. Pan American Health Organization; 2020.
13. Anand K, Ziebuhr J, Wadhwani P, Mesters JR and Hilgenfeld R. Coronavirus main proteinase (3CLpro) structure- basis for design of anti-SARS drugs. Science. 2003;300(5626):1763–7. DOI: 10.1126/science.1085658
14. Xian Y, Zhang J, Bian Z, Zhou H, Zhang Z, Lin Z, Xu H. Bioactive natural compounds against human coronaviruses: a review and perspective. Acta Pharm Sin B. 2020;10(7):1163–74. DOI: 10.1016/j.apsb.2020.06.002
15. Schnitzler P, Astani A & Reichling J. Lipids and Essential Oils as Antimicrobial Agents, John Wiley & Sons Ltd, England. 2011:239–54.
16. Ojah EO. Exploring essential oils as prospective therapy against the ravaging Coronavirus (SARS-CoV-2). Iberoam J Med. 2020;04:322–30.
17. León-Mendez G, Pájaro-Castro N, Pájaro-Castro E, Alarcón MT, Herrera-Barros A. Essential oils as a source of bioactive molecules. Rev Colomb Cienc Quím Farm. 2019;48:80–93. DOI: 10.15446/rcciquifa.v48n1.80067
18. Yabrir B. Chemical composition and biological activities of some marrubium species essential oil: a review. Chem J Mold. 2018;13:8–23. DOI: 10.19261/cjm.2018.506
19. Lahlou M. Methods to study the phytochemistry and bioactivity of essential oils. Phytother Res. 2004;18(6):435–48. DOI: 10.1002/ptr.1465
20. Pengelly A, Bone K. The constituents of medicinal plants: An introduction to the chemistry and therapeutics of herbal medicines, second ed., Routledge, London, 1996:184.
21. Ma L, Yao L. Antiviral Effects of Plant-Derived Essential Oils and Their Components: An Updated Review. Molecules. 2020;25:2627.
22. Tariq S, Wani S, Rasool W, Bhat MA, Prabhakar A, Shalla AH, Rather MA. A comprehensive review of the antibacterial, antifungal and antiviral potential of essential oils and their chemical constituents against drug-resistant microbial pathogens. Microb Pathog. 2019;134:103580. DOI: 10.1016/j.micpath.2019.103580
23. Mani JS, Johnson JB, Steel JC, Broszczak DA, Neilsen PM, Walsh KB, Naiker M. Natural product-derived phytochemicals as potential agents against coronaviruses: A review. Virus Res. 2020;284:197989. DOI: 10.1016/j.virusres.2020.197989
24. Wani A-R, Yadav K, Khursheed A, Ahmad Rather M. An updated and comprehensive review of the antiviral potential of essential oils and their chemical constituents with special focus on their mechanism of action against various influenza and coronaviruses. Microb Pathog. 2021;152:104620. DOI: 10.1016/j.micpath.2020.104620
25. Senathilake K, Samarakoon S, Tennekoon K. Virtual Screening of Inhibitors Against Spike Glycoprotein of SARS-CoV-2: A Drug Repurposing Approach. Preprints. 2020. DOI: 10.20944/preprints202003. 0042.v2
26. Omrani M, Bayati M, Mehrbod P, Nejad-Ebrahimi S. Natural products as inhibitors of COVID-19 main protease – A virtual screening by molecular docking. Pharm Sci. 2021;27(Suppl 1):S135–S148. DOI: 10.34172/PS.2021.11
27. Zhang D-H, Wu K-L, Zhang X, Deng S-Q, Peng B. In silico screening of Chinese herbal medicines with the potential to directly inhibit 2019 novel coronavirus. J Integr Med. 2020;18(2):152–8. DOI: 10.1016/j.joim.2020.02.005
28. Elfiky AA. SARS-CoV-2 RNA dependent RNA polymerase (RdRp) targeting: an in silico perspective. J Biomol Struct Dyn. 2021;39(9):3204–12. DOI: 10.1080/07391102.2020.1761882
29. Yabrir B, Belhassan A, Lakhlifi T, Salgado GM, Bouachrine M, Munoz PC, Gerli LC, Ramirez RT. Minor composition compoun M.ds of Algerian herbal medicines as inhibitors of SARS-CoV-2. J Chil Chem Soc. 2021;66:5067–74. DOI: 10.4067/S0717-97072021000105067
30. Guo S, Xie H, Lei Y, Liu B, Zhang L, Xu Y, Zuo Z. Discovery of novel inhibitors against main protease (Mpro) of SARS-CoV-2 via virtual screening and biochemical evaluation. Bioorganic Chem. 2021;110:104767. DOI: 10.1016/j.bioorg.2021.104767
31. Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31(2):455–61. DOI: 10.1002/jcc.21334
32. Hunter CA, Lawson KR, Perkins J, Urch CJ. Aromatic interactions. J Chem Soc Perkin Trans.2. 2001;25:651–69. DOI: 10.1039/B008495F
33. Belhassan A, Zaki H, Aouidate A, Benlyas M, Lakhlifi T, Bouachrine M. Interactions between (4Z)-hex-4-en-1-ol and 2-methylbutyl 2-methylbutanoate with olfactory receptors using computational methods. Mor J Chem. 2019;7:028–035. DOI: 10.48317/IMIST.PRSM/morjchem-v7i1.12247
34. Hakmi M, Bouricha EM, Kandoussi I, El Harti J, Ibrahimi A. Repurposing of known anti-virals as potential inhibitors for SARS-CoV-2 main protease using molecular docking analysis. Bioinformation. 2020;16(4):301–6. DOI: 10.6026/97320630016301
35. Aanouz I, Belhassan A, El Khatabi K, Lakhlifi T, El Idrissi M, Bouachrine M. Moroccan Medicinal plants as inhibitors of COVID-19: Computational investigations. J Biomol Struct Dyn. 2021;39(8):2971–9. DOI: 10.1080/07391102.2020.1758790
36. Hernández-Santoyo A, Tenorio-Barajas Y, Altuzar V, Vivanco-Cid H, Mendoza-Barrera C. Protein-Protein and Protein-Ligand Docking. Intech open science/open mind. 2013;3:63. DOI: 10.5772/56376
37. Lipinski CA, Franc D, Ombardo I, Dominy WB, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 1997;23(1-3):3–25. DOI: 10.1016/S0169-409X (96)00423-1
38. Pires DEV, Blundell TL, Ascher DB. pkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. J Med Chem. 2015;58:4066–72. DOI: 10.1021/acs.jmedchem.5b00104
39. Zhao YH, Abraham MH, Le J, Hersey A, Luscombe CN, Beck G, Sherborne B, Cooper I. Rate-Limited Steps of Human Oral Absorption and QSAR Studies. Pharm Res. 2002;19(10):1446–57. DOI: 10.1023/a:1020444330011
40. de Waterbeemd HV, Gifford E. ADMET in silico modelling: towards prediction paradise? Nat Rev Drug Discov. 2003;2:192–204. DOI: 10.1038/nrd1032
41. Daina A, Michielin O, Zoete V. Swiss ADME: a free web tool to evaluate pharmacokinetics, drug- likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7:42717. DOI: 10.1038/srep42717
42. Loizzo MR, Antoine MS, Rosa T, Giancarlo AS, Francesco M, Gambarid IR, Cinatle J, Doerre HW. Phytochemical Analysis and in vitro Antiviral Activities of the Essential Oils of Seven Lebanon Species. Chem Biodrivers. 2008;5(3):461–70. DOI: 10.1002/cbdv.200890045
43. Dob T, Dahmane D, Chelghoum C. Essential Oil Composition of Juniperus Oxycedrus Growing in Algeria. Pharm Biol. 2006;44:1–6. DOI: 10.1080/13880200500530922
44. Marshall JA. Synthesis of Cembranoid Natural Products by Intramolecular SE′ Additions of Allylic Stannanes to Ynals. Strategies and Tactics in Organic. 1991;9:347–79. DOI: 10.1016/B978-0-08-092430-4.50015-9
45. Tius MA. Synthesis of cembranes and cembranolides. Chem Rev. 1988;88:719–732. DOI: 10.1021/cr00087a001
46. Han Y, Zhang J, Hu CQ, Zhang X, Ma B, Zhang P. In silico ADME and Toxicity Prediction of Ceftazidime and its Impurities. Front Pharmacol. 2019;10:1–12. DOI: 10.3389/fphar.2019.00434
47. Liang LF, Guo YW Terpenes from the Soft Corals of the Genus Sarcophyton-Chemistry and Biological Activities. Chem Biodivers. 2013;10(12):2161–96. DOI: 10.1002/cbdv.201200122
48. Hegazy MEF, Mohamed TA, Alhammady MA, Shaheen AM, Reda EH, Elshamy AI, Aziz M, Paré PW. Molecular Architecture and Biomedical Leads of Terpenes from Red Sea Marine Invertebrates. Mar Drugs. 2015;13(5):3154–81. DOI: 10.3390/md13053154
49. Hegazy MEF, Elshamy AI, Mohamed TA, Hamed AR, Ibrahim MAA, Ohta S, Paré PW. Cembrene Diterpenoids with Ether Linkages from Sarcophyton ehrenbergi- An Anti-Proliferation and Molecular-Docking Assessment. Mar Drugs. 2017;15(6):192. DOI: 10.3390/md15060192
50. Arthur DE, Uzairu A. Molecular docking studies on the interaction of NCI anticancer analogues with human Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit. J King Saud Uni. Sci. 2019;31:1151–66. DOI: 10.1016/j.jksus.2019.01.011
51. Belhassan A, Chtita S, Zaki H, Lakhlifi T, Bouachrine M. Molecular docking analysis of N-substituted oseltamivir derivatives with the SARS-Cov-2 main protease. Bioinformation. 2020;16:404–10. DOI: 10.6026/97320630016404
52. Pyka Babuska M, Zachariasz M. A comparison of theoretical methods of calculation of partition coefficients for selected drugs. Acta Pol Pharm. 2006;63:159–67.
53. Morguuchi I, Hirono S, Nakagomie I, Hirano H. Comparison of reliability of log P values for drugs calculated by several methods. Chem Pharm Bull. 1994;42:976–8. DOI: 10.1248/cpb.42.976
54. Lipinski C.A. Lead- and drug-like compounds- the rule-of-five revolution // Drug Discov Today Technol. – 2004. – Vol. 1, No. 4. – P. 337–341. DOI: 10.1016/j.ddtec.2004.11.007
55. Gleeson P. Generation of a Set of Simple, Interpretable ADMET Rules of Thumb. J Med Chem. 2008;51:817–34. DOI: 10.1021/jm701122q
56. Martin YC. A Bioavailability Score. J Med Chem. 2005;48:3164–70. DOI: 10.1021/jm0492002
57. Ertl P, Rohde B, Selzer P. Fast Calculation of Molecular Polar Surface Area as a Sum of Fragment-Based Contributions and Its Application to the Prediction of Drug Transport Properties. J Med Chem. 2000;43:3714–3717. DOI: 10.1021/jm000942e
58. Lagorce D, Douguet D, Miteva M, Villoutreix BO. Computational analysis of calculated physicochemical and ADMET properties of protein-protein interaction inhibitors. Sci Rep. 2017;7:46277. DOI: 10.1038/srep46277
59. Daina A, Zoete V. A BOILED-Egg To Predict Gastrointestinal Absorption and Brain Penetration of Small Molecules. ChemMedChem. 2016;11(11):1117–21. DOI: 10.1002/cmdc.201600182
Review
For citations:
Yabrir B., Belhassan A., Lakhlifi T., Moran G.S., Bouachrine M., Candia L.G. SARS-CoV-2 Main Protease inhibitors in trace constituents from Algerian herbal medicines using in silico approaches. Pharmacy & Pharmacology. 2025;13(1):56-66. https://doi.org/10.19163/2307-9266-2025-13-1-56-66