PreKinetix: web application for pharmacokinetic analysis in preclinical drug research
https://doi.org/10.19163/2307-9266-2025-13-4-246-259
Abstract
The aim. Development and validation of domestic software for non-compartmental analysis (NCA) of pharmacokinetic data, comparable in accuracy and functionality to the recognized foreign software Phoenix WinNonlin (USA).
Materials and methods. The PreKinetix web application is implemented in the Python programming language using the Streamlit framework. Algorithms for calculating pharmacokinetic parameters (maximum concentration [Cmax], area under the pharmacokinetic curve [AUC], half-life [T1/2], mean residence time [MRT], etc.) are based on the methods of the reference software Phoenix WinNonlin (Certara, USA), used for comparison and are widely used in international practice. Three models of single drug administration are supported: intravenous bolus, intravenous infusion, and extravascular administration. Literary and experimental data covering more than 450 pharmacokinetic profiles were used for verification.
Results. Calculations performed using PreKinetix showed complete agreement with the results of Phoenix WinNonlin with a relative error of less than 0.0001% for all main parameters. The program stably processes zero and missing values, automatically excludes incorrect records, visualizes pharmacokinetic profiles in linear and semi-logarithmic scales, and generates reports in .xlsx* and .docx* formats. The application interface allows it to be used not only by specialists but also by less trained users.
Conclusion. PreKinetix is a domestic tool for NCA that combines accuracy, automation, accessibility, and convenience. It can be used in preclinical and early phases of clinical trials, as well as in educational settings for training specialists in pharmacokinetics and biopharmaceutics.
Keywords
About the Authors
P. M RezvanovRussian Federation
graduate student, junior researcher at the Laboratory of Bioinformatics and Pharmacological Modeling of the Center for Biopharmaceutical Analysis and Metabolic Research at the Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University).
2 Trubetskaya Str., Bldg 8, Moscow, Russia, 119991.
N. E. Moskaleva
Russian Federation
Candidate of Sciences (Biology), Deputy Head of the Center for Biopharmaceutical Analysis and Metabolic Research at the Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University).
2 Trubetskaya Str., Bldg 8, Moscow, Russia, 119991.
K. M. Shestakova
Russian Federation
Candidate of Sciences (Pharmacy), Head of the Laboratory of Bioinformatics and Pharmacological Modeling at the Center for Biopharmaceutical Analysis and Metabolic Research, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University).
2 Trubetskaya Str., Bldg 8, Moscow, Russia, 119991.
V. V. Tarasov
Russian Federation
Doctor of Sciences (Pharmacy), Director of the Institute of Translational Medicine and Biotechnology, Vice-Rector for Scientific and Technological Development, I.M. Sechenov First Moscow State Medical University (Sechenov University).
2 Trubetskaya Str., Bldg 8, Moscow, Russia, 119991.
E. A. Smolyarchuk
Russian Federation
Candidate of Sciences (Medicine), Assistant Professor, Head of the Department of Pharmacology of the A.P. Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University).
2 Trubetskaya Str., Bldg 8, Moscow, Russia, 119991.
D. A. Kudlay
Russian Federation
Doctor of Sciences (Medicine), Professor of the Department of Pharmacology at the A.P. Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University); Deputy Dean for Scientific and Technological Development of the Faculty of Bioengineering and Bioinformatics, Senior Researcher at the Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University; Leading Researcher of the Laboratory of Personalized Medicine and Molecular Immunology No. 71, State Research Center Institute of Immunology; Corresponding Member of the Russian Academy of Sciences.
1. 2 Trubetskaya Str., Bldg 8, Moscow, Russia, 119991.
2. 1 Leninskie Gory, Moscow, Russia, 119991.
3. 24 Kashirskoe Hwy, Moscow, 115522, Russia.
S. A. Apollonova
Russian Federation
Candidate of Sciences (Chemistry), Head of the Center for Biopharmaceutical Analysis and Metabolic Research at the Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University).
2 Trubetskaya Str., Bldg 8, Moscow, Russia, 119991.
References
1. Kim H, Han S, Cho YS, Yoon SK, Bae KS. Development of R packages: 'NonCompart' and 'ncar' for noncompartmental analysis (NCA). Transl Clin Pharmacol. 2018 Mar;26(1):10-15. DOI: 10.12793/tcp.2018.26.1.10 Erratum in: Transl Clin Pharmacol. 2018;26(3):141. DOI: 10.12793/tcp.2018.26.3.141.
2. Zhang Y, Huo M, Zhou J, Xie S. PKSolver: An add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel. Comput Methods Programs Biomed. 2010;99(3):306-14. DOI: 10.1016/j.cmpb.2010.01.007
3. Liu G, Brooks L, Canty J, Lu D, Jin JY, Lu J. Deep-NCA: A deep learning methodology for performing noncompartmental analysis of pharmacokinetic data. CPT Pharmacometrics Syst Pharmacol. 2024;13(5):870-879. DOI: 10.1002/psp4.13124
4. Benet LZ. Benet L Z and Galeazzi R L: noncompartmental determination of the steady-state volume of distribution, J Pharm Sci 68, 1071-1074, 1979- the backstory. AAPS J. 2012;14(2):164-7. DOI: 10.1208/s12248-012-9326-9
5. Yu YP, Yan XY, Yao C, Xia JL. Bioequivalence Assessment of Topical Ophthalmic Drugs Using Sparse Sampling Pharmacokinetics Data. Biomed Environ Sci. 2019;32(10):788-792. DOI: 10.3967/bes2019.099
6. Rajput AJ, Aldibani HKA, Rostami-Hodjegan A. In-depth analysis of patterns in selection of different physiologically based pharmacokinetic modeling tools: Part I - Applications and rationale behind the use of open source-code software. Biopharm Drug Dispos. 2023;44(3):274-285. DOI: 10.1002/bdd.2357
7. Aldibani HKA, Rajput AJ, Rostami-Hodjegan A. In-depth analysis of patterns in selection of different physiologically-based pharmacokinetic modeling tools: Part II - Assessment of model reusability and comparison between open and non-open source-code software. Biopharm Drug Dispos. 2023;44(4):292-300. DOI: 10.1002/bdd.2360
8. Dong Zh, Fan X, Fan W, Chang H, Xu Y, Li T, Su M. Pkweb: An online application for pharmacokinetic data analysis. Environmental Technology & Innovation. 2020;19:100838. DOI: 10.1016/j.eti.2020.100838
9. Kuang Y, Cao D, Zuo Y, Yuan J, Lu F, Zou Y, Wang H, Jiang D, Pei Q, Yang G. CPhaMAS: An online platform for pharmacokinetic data analysis based on optimized parameter fitting algorithm. Computer Methods and Programs in Biomedicine. 2024;248:108137. DOI: 10.1016/j.cmpb.2024.108137
10. Hau NP. Data analysis in Python using Pandas and Matplotlib. Ekonomika i upravlenie: problemy, resheniya. 2024;8(12):91-97. DOI: 10.36871/ek.up.p.r.2024.12.08.011
11. Taiirbekova R, Kochkonbaeva B, Kalbaeva D. Data Analysis using Python Programming Language. Bulletin of Science and Practice. 2025;11(5):139-144. DOI: 10.33619/2414-2948/114/20
12. Kumar A, Sharma PK, Tyagi MK. The High Demanding Programming Language for Data Science-Python. International Journal of Scientific Research in Engineering and Management. 2024;8(6):1-6. DOI: 10.55041/IJSREM34913
13. McKinney W. Data Structures for Statistical Computing in Python. Proc. of the 9th Python in science conf. (SCIPY 2010). 2010:56–61. DOI: 10.25080/Majora-92bf1922-00a
14. Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen P, Cournapeau D, Wieser E, Taylor J, Berg S, Smith NJ, Kern R, Picus M, Hoyer S, van Kerkwijk MH, Brett M, Haldane A, Del Río JF, Wiebe M, Peterson P, Gérard-Marchant P, Sheppard K, Reddy T, Weckesser W, Abbasi H, Gohlke C, Oliphant TE. Array programming with NumPy. Nature. 2020;585(7825):357-62. DOI: 10.1038/s41586-020-2649-2
15. Hunter JD. Matplotlib: A 2D Graphics Environment. Computing in Science & Engineering. 2007;9(3):90-5. DOI: 10.1109/MCSE.2007.55
16. Waskom ML. Seaborn: statistical data visualization. Journal of Open Source Software. 2021;6(60):3021. DOI: 10.21105/joss.03021
17. Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, Burovski E, Peterson P, Weckesser W, Bright J, van der Walt SJ, Brett M, Wilson J, Millman KJ, Mayorov N, Nelson ARJ, Jones E, Kern R, Larson E, Carey CJ, Polat İ, Feng Y, Moore EW, VanderPlas J, Laxalde D, Perktold J, Cimrman R, Henriksen I, Quintero EA, Harris CR, Archibald AM, Ribeiro AH, Pedregosa F, van Mulbregt P; SciPy 1.0 Contributors. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat Methods. 2020;17(3):261-272. DOI: 10.1038/s41592-019-0686-2 Erratum in: Nat Methods. 2020;17(3):352. DOI: 10.1038/s41592-020-0772-5
18. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay É. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011;12(85):2825–2830.
19. Seabold S, Perktold J. Statsmodels: Econometric and Statistical Modeling with Python. Proc. of the 9th Python in science conf. (SCIPY 2010). 2010:92–6. DOI: 10.25080/Majora-92bf1922-011
20. Hagberg AA, Schult DA, Swart PJ. Exploring network structure, dynamics, and function using NetworkX. Proceedings of the 7th Python in Science Conference (SciPy 2008). 2008:11-16. DOI: 10.25080/TCWV9851
21. Platova AI. Population pharmacokinetics analysis in Lixoft Monolix softwares. Pharmacokinetics and Pharmacodynamics. 2021;(3):36-51. DOI: 10.37489/2587-7836-2021-3-36-51
22. Archakova OA, Bagaeva NS, Komarov TN, Rogov AV, Shchelgacheva DS, Suvorova AV, Karnakova PK, Karpova PA, Shohin IE. Pharmacokinetics Study of the Long-acting Antiarrhythmic Drug of Lappaconitine Hydrobromide (Allaforte®, JSC "Pharmcenter VILAR", Russia). Drug development & registration. 2022;11(1):140-147. DOI: 10.33380/2305-2066-2022-11-1-140-147
23. Yamaoka K, Nakagawa T, Uno T. Statistical moments in pharmacokinetics. J Pharmacokinet Biopharm. 1978;6(6):547-58. DOI: 10.1007/BF01062109
24. Leng X, Tang X, Hu P, Guan X, Li Q, Huang C, Zhang Q, Chen R, Zeng X. Safety, tolerability, pharmacokinetics, pharmacodynamics, and efficacy of WBP216, a novel IL-6 monoclonal antibody, in patients with rheumatoid arthritis: A phase Ia randomized placebo-controlled study. Front Immunol. 2023;13:1110992. DOI: 10.3389/fimmu.2022.1110992
25. Cheng Y, Lin BJ, Guo JH, Huang BL, Fang LP, Que WC, Liu MB, Chen XF, Qiu HQ. The Effect Of Food On The Pharmacokinetic Properties And Bioequivalence Of Two Formulations Of Levocetirizine Dihydrochloride In Healthy Chinese Volunteers. Drug Des Devel Ther. 2019;13:3625-3634. DOI: 10.2147/DDDT.S215316 Erratum in: Drug Des Devel Ther. 2019;13:3835. DOI: 10.2147/DDDT.S236661
26. Hughes JH, Long-Boyle J, Keizer RJ. Maximum a posteriori Bayesian methods out-perform non-compartmental analysis for busulfan precision dosing. J Pharmacokinet Pharmacodyn. 2024;51(3):279-88. DOI: 10.1007/s10928-024-09915-w
Review
For citations:
Rezvanov P.M., Moskaleva N.E., Shestakova K.M., Tarasov V.V., Smolyarchuk E.A., Kudlay D.A., Apollonova S.A. PreKinetix: web application for pharmacokinetic analysis in preclinical drug research. Pharmacy & Pharmacology. 2025;13(4):246-259. (In Russ.) https://doi.org/10.19163/2307-9266-2025-13-4-246-259