Prospects for the use of an original medicine based on hexapeptide succinate for organ protection in various diseases
https://doi.org/10.19163/2307-9266-2025-13-5-338-349
Abstract
The aim. To analyze and summarize the available results of experimental and clinical scientific studies of synthetic analogs of leu-enkephalin; to evaluate the expansion of the spectrum of application of the original medicine based on hexapeptide succinate in patients with various diseases of different etiologies.
Materials and methods. An analysis of scientific literature data in the PubMed, eLibrary.ru and CyberLeninka databases was carried out. The search depth was 50 years (from 1976 to 2024), the list of references includes 60 scientific papers.
Results. It was revealed that receptors for endogenous opioid peptides are widespread in living organisms. Modern neuropharmacology recognizes 4 main types of opioid receptors: μ (MOR) — mu, δ (DOR) — delta, κ (KOR) — kappa and NOP — nociceptive receptor, which bind to endogenous opioids such as enkephalins, endorphins, endomorphins, dynorphins and nociceptin. Due to their antioxidant, immunomodulatory, and anti-inflammatory properties, analogs of opioid peptides are widely used in Russian medicine. A number of experimental and clinical studies are presented, to prove that agonists of delta-opioid receptors can “soften” organ damage in a variety of diseases accompanied by oxidative stress and endothelial dysfunction. The dose-dependent regulatory effect is realized with intravenous, intramuscular and intranasal administration. The therapeutic efficacy of leu-enkephalin analogs based on tyrosyl-D-alanyl-glycyl-phenylalanyl-leucyl-arginine is analyzed, and the prospects for using the new original Russian medicine Ambervin® Pulmo with the inclusion of succinic acid salts are also discussed.
Conclusion. The information on the functional properties of leucine-enkephalin analogs presented in the article indicates broad prospects for the use of medicines based on tyrosyl-D-alanyl-glycyl-phenylalanyl-leucyl-arginine with the inclusion of succinic acid salt in the complex therapy of many diseases for the purpose of organ protection.
Keywords
About the Authors
Kh. G. OmarovaRussian Federation
Candidate of Sciences (Medicine), Head of the Clinical Research Department of the Central Research Institute of Epidemiology.
3A Novogireevskaya Str., Moscow, Russia, 111123.
N. Yu. Pshenichcnaya
Russian Federation
Doctor of Sciences (Medicine), Professor, Deputy Director for Clinical and Analytical Work at the Central Research Institute of Epidemiology of Rospotrebnadzor; Head of the Department of Infectious Diseases of the Russian University of Medicine.
1. 3A Novogireevskaya Str., Moscow, Russia, 111123.
2. 2/1 Barrikadnaya Str., Bldg 1, Moscow, Russia, 125993.
A. V. Gorelov
Russian Federation
Doctor of Sciences (Medicine), Professor, Deputy Director for Scientific Work at the Central Research Institute of Epidemiology; Head of the Department of Infectious Diseases and Epidemiology at the Russian University of Medicine; Academician of the Russian Academy of Sciences.
1. 3A Novogireevskaya Str., Moscow, Russia, 111123.
2. 20/1 Delegatskaya Str., Moscow, Russia, 127473.
V. S. Shcherbakova
Russian Federation
Candidate of Sciences (Biology), Assistant Professor of the Department of Pharmacology, Tver State Medical University.
4 Sovetskaya Str., Tver, Russia, 170100.
K. Ya. Zaslavskaya
Russian Federation
Assistant of the Department of Biological and Pharmaceutical Chemistry with the course of organization and management of pharmacy of the National Research Ogarev Mordovia State University.
68 Bolshevistskaya Str., Saransk, Russia, 430005.
P. A. Bely
Russian Federation
Doctor of Sciences (Medicine), Senior Laboratory Assistant of Department of Internal Medicine and Gastroenterology of the Russian University of Medicine.
20/1 Delegatskaya Str., Moscow, Russia, 127473.
A. V. Taganov
Russian Federation
Doctor of Sciences (Medicine), Professor, Professor of the Department of Infectious Diseases of Russian Medical Academy of Continuous Professional Education.
2/1 Barrikadnaya Str., Bldg 1, Moscow, Russia, 125993.
References
1. Crook H, Raza S, Nowell J, Young M, Edison P. Long covid-mechanisms, risk factors, and management. BMJ. 2021;374:n1648. DOI: 10.1136/bmj.n1648. Erratum in: BMJ. 2021;374:n1944. DOI: 10.1136/bmj.n1944
2. Chen R, Lan Z, Ye J, Pang L, Liu Y, Wu W, Qin X., Guo Y, Zhang P. Cytokine storm: the primary determinant for the pathophysiological evolution of COVID-19 deterioration. Front Immunol. 2021;12:589095. DOI: 10.3389/fimmu.2021.589095
3. Osuchowski MF, Winkler MS, Skirecki T, Cajander S, Shankar-Hari M, Lachmann G, Monneret G, Venet F, Bauer M, Brunkhorst FM, Weis S, Garcia-Salido A, Kox M, Cavaillon JM, Uhle F, Weigand MA, Flohé SB, Wiersinga WJ, Almansa R, de la Fuente A, Martin-Loeches I, Meisel C, Spinetti T, Schefold JC, Cilloniz C, Torres A, Giamarellos-Bourboulis EJ, Ferrer R, Girardis M, Cossarizza A, Netea MG, van der Poll T, Bermejo-Martín JF, Rubio I. The COVID-19 puzzle: deciphering pathophysiology and phenotypes of a new disease entity. Lancet Respir Med. 2021;9(6):622–642. DOI: 10.1016/S2213-2600(21)00218-6
4. Carr R, Frings S. Neuropeptides in sensory signal processing. Cell and Tissue Research. 2019;375(1):217–25. DOI: 10.1007/s00441-018-2946-3
5. Zöllner C, Stein C. Opioids. Handb Exp Pharmacol. 2007;(177):31–63. DOI: 10.1007/978-3-540-33823-9_2
6. Toubia T, Khalife T. The Endogenous Opioid System: Role and Dysfunction Caused by Opioid Therapy. Clin Obstet Gynecol. 2019;62(1):3–10. DOI: 10.1097/GRF.0000000000000409
7. Martin WR, Eades CG, Thompson JA, Huppler RE, Gilbert PE. The effects of morphine- and nalorphine- like drugs in the nondependent and morphine-dependent chronic spinal dog. J Pharmacol Exp Ther. 1976;197(3):517–32.
8. Lord JA, Waterfield AA, Hughes J, Kosterlitz HW. Endogenous opioid peptides: multiple agonists and receptors. Nature. 1977;267(5611):495–9. DOI: 10.1038/267495a0
9. Dietis N, Rowbotham DJ, Lambert DG. Opioid receptor subtypes: fact or artifact? Br J Anaesth. 2011;107(1):8–18. DOI: 10.1093/bja/aer115
10. Bunzow JR, Saez C, Mortrud M, Bouvier C, Williams JT, Low M, Grandy DK. Molecular cloning and tissue distribution of a putative member of the rat opioid receptor gene family that is not a mu, delta or kappa opioid receptor type. FEBS Lett. 1994;347(2-3):284–8. DOI: 10.1016/0014-5793(94)00561-3
11. Meunier JC, Mollereau C, Toll L, Suaudeau C, Moisand C, Alvinerie P, Butour JL, Guillemot JC, Ferrara P, Monsarrat B, et al. Isolation and structure of the endogenous agonist of opioid receptor-like ORL1 receptor. Nature. 1995;377(6549):532–5. DOI: 10.1038/377532a0
12. Reinscheid RK, Nothacker HP, Bourson A, Ardati A, Henningsen RA, Bunzow JR, Grandy DK, Langen H, Monsma FJ Jr, Civelli O. Orphanin FQ: a neuropeptide that activates an opioidlike G protein-coupled receptor. Science. 1995;270(5237):792–4. DOI: 10.1126/science.270.5237.792
13. Shenoy SS, Lui F. Biochemistry, Endogenous Opioids. 2023. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025.
14. Stein C. Opioid Receptors. Annu Rev Med. 2016;67:433–51. DOI: 10.1146/annurev-med-062613-093100
15. Corder G, Castro DC, Bruchas MR, Scherrer G. Endogenous and Exogenous Opioids in Pain. Annu Rev Neurosci. 2018;41:453–473. DOI: 10.1146/annurev-neuro-080317-061522
16. Peng J, Sarkar S, Chang SL. Opioid receptor expression in human brain and peripheral tissues using absolute quantitative real-time RT-PCR. Drug Alcohol Depend. 2012;124(3):223–8. DOI: 10.1016/j.drugalcdep.2012.01.013
17. Sergalieva MU, Tsibizova AA, Krintsova TA, Samotrueva MA. Opioid peptides: physiological role, molecular mechanisms and pharmacological activity. Russian Journal of Pain. 2023;21(3):43–49. DOI: 10.17116/pain20232103143
18. Shang Y, Filizola M. Opioid receptors: Structural and mechanistic insights into pharmacology and signaling. Eur J Pharmacol. 2015;763(Pt B):206–13. DOI: 10.1016/j.ejphar.2015.05.012
19. Kaserer T, Lantero A, Schmidhammer H, Spetea M, Schuster D. μ Opioid receptor: novel antagonists and structural modeling. Sci Rep. 2016;6:21548. DOI: 10.1038/srep21548
20. Bodnar RJ. Endogenous opiates and behavior: 2014. Peptides. 2016;75:18–70. DOI: 10.1016/j.peptides.2015.10.009
21. Pinaeva OG, Sazonova EN, Lebedko OA. Correction of the negative effect of antenatal hypoxia on liver tissue homeostasis in newborn albino rats with opioid peptides. Bull Exp Biol Med. 2016;162:203–206. DOI: 10.1007/s10517-016-3576-y
22. Dhaliwal A, Gupta M. Physiology, Opioid Receptor. 2023 Jul 24. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025.
23. Husain S. Delta Opioids: Neuroprotective Roles in Preclinical Studies. J Ocul Pharmacol Ther. 2018;34(1-2):119–128. DOI: 10.1089/jop.2017.0039
24. Chao D, Xia Y. Ionic storm in hypoxic/ischemic stress: can opioid receptors subside it? Prog Neurobiol. 2010;90(4):439–70. DOI: 10.1016/j.pneurobio.2009.12.007
25. Pattinson KT. Opioids and the control of respiration. Br J Anaesth. 2008;100(6):747–58. DOI: 10.1093/bja/aen094
26. van den Brink OW, Delbridge LM, Rosenfeldt FL, Penny D, Esmore DS, Quick D, Kaye DM, Pepe S. Endogenous cardiac opioids: enkephalins in adaptation and protection of the heart. Heart Lung Circ. 2003;12(3):178–87. DOI: 10.1046/j.1444-2892.2003.00240.x
27. Tyagi A, Daliri EBM, Kwami Ofosu F, Yeon SJ, Oh DH. Opioid peptides of food origin in human health: A review. Int J Mol Sci. 2020;21(22):8825. DOI: 10.3390/ijms21228825
28. Garg S, Nurgali K, Mishra VK. Food Proteins as Source of Opioid Peptides-A Review. Curr Med Chem. 2016;23(9):893–910. DOI: 10.2174/0929867323666160219115226
29. Plein LM, Rittner HL. Opioids and the immune system - friend or foe. Br J Pharmacol. 2018;175(14):2717–2725. DOI: 10.1111/bph.13750
30. Tian J, Jiao X, Wang X, Geng J, Wang R, Liu N, Gao X, Griffin N, Shan F. Novel effect of methionine enkephalin against influenza A virus infection through inhibiting TLR7-MyD88-TRAF6-NF-κB p65 signaling pathway. Int Immunopharmacol. 2018;55:38–48. DOI: 10.1016/j.intimp.2017.12.001
31. Gein SV, Tendryakova SP. Agonists of μ- and δ-opioid receptors in the regulation of IL-2, IL-4, and IFN-γ production by peripheral blood cells in vitro. Human Physiology. 2015;41(3):323–7. DOI: 10.1134/S0362119715030056
32. Karkischenko VN, Pomytkin IA, Skvortsova VI. The Opioidergic System of Immune Cells: A New Pharmacological Target in the Therapy of “Cytokine Storm”. Journal Biomed. 2020;16(4):14–23. DOI: 10.33647/2074-5982-16-4-14-23
33. Zhang Y, Wang R, Shi W, Zheng Z, Wang X, Li C, Zhang S, Zhang P. Antiviral effect of fufang yinhua jiedu (FFYH) granules against influenza A virus through regulating the inflammatory responses by TLR7/MyD88 signaling pathway // J Ethnopharmacol. 2021;275:114063. DOI: 10.1016/j.jep.2021.114063
34. Gein SV, Kadochnikova YaA. Endomorphin-1 affecting innate immune cells in vitro. Russian Journal of Immunology. 2020;23(2):119–124. DOI: 10.46235/1028-7221-371-EAI
35. Coccia R, Foppoli C, Blarzino C, De Marco C, Rosei MA. Interaction of enkephalin derivatives with reactive oxygen species. Biochim Biophys Acta. 2001;1525(1-2):43–9. DOI: 10.1016/s0304-4165(00)00169-0
36. Gein SV, Gen SV, Baeva TA. Endomorphins: structure, localization, immunoregulatory activity. Problems of Endocrinology. 2020;66(1):78–86. DOI: 10.14341/probl10364
37. Tang CW, Feng WM, Du HM, Bao Y, Zhu M. Delayed administration of D-Ala2-D-Leu5-enkephalin, a delta-opioid receptor agonist, improves survival in a rat model of sepsis // Tohoku J Exp Med. 2011;224(1):69–76. DOI: DOI: 10.1620/tjem.224.69
38. Karkischenko V.N., Pomytkin I.A., Gasanov M.T., Nesterov M.S., Fokin Yu.V., Taboyakova L.A., Alimkina O.V., Khvostov D.V. Prophylactic and Therapeutic Administration of Leutragin Increases the Survival Rate of Animals in a Model of Fatal Acute Respiratory Distress Syndrome. Journal Biomed. 2020;16(4):44–51. DOI: 10.33647/2074-5982-16-4-44-51
39. Karkischenko VN, Pomytkin IA, Petrova NV, Nesterov MS, Ageldinov RA, Zotova LV, Koloskova EM, Slobodenyuk VV, Skvortsova VI. Leutragin Inhibits Expression of Cytokines, Including Interleukin-6, in a “Cytokine Storm” Model in C57BL/6Y Mice with Induced Acute Respiratory Distress Syndrome. Journal Biomed. 2020;16(4):34–43. DOI: 10.33647/2074-5982-16-4-34-43
40. Perevedentseva S.E., Savinova N.V., Trofimova S.R. The effect of dalargin on the parameters of collagen metabolism in tissues of rats under the action of repeated stress. Health, demography, ecology of the Finno-Ugric peoples. 2022;2:54–8. EDN: MXAFIW
41. Usenko OYu, Petrushenko VV, Savolyuk SI, Radyoga YaV, Grebenyuk DI. Experimental estimation of the local application efficacy of biological stimulator for the soft tissues reparation in treatment of chronic gastric ulcers. Klin Khir. 2016;9:62–5.
42. Pinaeva OG, Lebed'ko OA, Pinaev SK, Sazonova EN. Hepatoprotective Effect of Neonatal Administration of Non-Opioid Leu-Enkephalin Analogue in Adult Albino Rats Subjected to Antenatal Hypoxia. Bull Exp Biol Med. 2019;167(4):428–31. DOI: 10.1007/s10517-019-04542-9
43. Pinaeva OG, Lebedko OA, Pinaev SK, Sazonova EN. The effect of neonatal administration of dalargin on morphometric indexes of hepatocytes and free radicals oxidation in albino rats exposed to hypoxia. Far East Medical Journal. 2017;(3):67–71. EDN: ZIGBOF
44. Bebyakova NA, Levitsky SN, Khromova AV, Shabalina IA, Komandresova TM. Cardio-vascular effects of dalargin in conditions of acute stress. International Research Journal. 2014;(8(27)):34–6. EDN: SMYZMD
45. Czyzyk TA, Romero-Picó A, Pintar J, McKinzie JH, Tschöp MH, Statnick MA, Nogueiras R. Mice lacking δ-opioid receptors resist the development of diet-induced obesity. FASEB J. 2012;26(8):3483–92. DOI: 10.1096/fj.12-208041
46. Bulgakov SA. Hexapeptide dalargin in clinical gastroenterology: 30 years' of clinical application of the drug. Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2016;26(3):103–12. DOI: 10.22416/1382-4376-2016-26-3-103-112
47. Alekseenko SA, Timoshin SS, Bolonyaeva NA, Ozhegov EV, Zhivotova EY, Fleischman MY, Zhavnenko MY. Influence of dalargin on reparative ability of the gastrointestinal mucosa in various gastroenterological diseases. Far East Medical Journal. 2010;(3):24–8. EDN: NPFWDL
48. Bolonaeva NA, Ghivotova EU, Fleishman MU, Isaenko LP, Sazonova EN, Alexeenko SA, Timoshin SS. Dalargin in nsaid-gastropathy prophylactic and treatment measures. Far East Medical Journal. 2005;(2):28–30. EDN: RXGIOV
49. Dontsov A.V. Influence of dalargin on carbohydrate metabolism in coronary heart disease patients with metabolic syndrome. People and Health. 2016;(1):21–5. EDN: VSZEFV
50. Grebenchikov OA, Ovezov AM, Skripkin YuV, Zabelina TS, Ulitkina ON, Lugovoy AV, Prikhodko AS, Ryzhkov AYu, Zinovkin RA. Synthetic Analogue of Leu-Enkephalin Prevents Endothelial Dysfunction in vitro. General Reanimatology. 2018;14(2):60–68. DOI: 10.15360/1813-9779-2018-2-60-68
51. Moisieieva N, Gulevskyy O, Gorina O. Effect of Leu-Enkephalin (Dalargin) on Apoptosis and Necrosis of Leukocytes After Cold Stress. Problems of Cryobiology and Cryomedicine. 2022;32(1):14–23. DOI: 10.15407/cryo29.03.246
52. Glazunova IB, Silina LV, Bobyntsev II. Influence of dalargin on efficiency of atopic dermatitis therapy. People and Health. 2008;(3):22–6. EDN: JVIGDR
53. Magomedov M.A., Burda N.G., Misikov Z.F., Ryzhkov A.Yu., Antonova V.V., Cherpakov R.A. Synthetic Analogue of Leu-Enkephalin in COVID-19 (a Prospective Clinical Study). General Reanimatology. 2022;18(4):11–9. DOI: 10.15360/1813-9779-2022-4-11-19
54. Bebyakova NА, Levitsky SN, Shabalina IА. Influence of structural modification of dalargin molecule on peptide vasoactive effect in acute stress. Fundamental research. 2011;12(4):704–7. EDN: OULAOZ
55. Pizova NV. Succinic acid derivatives in therapy for cerebrovascular disease. Neurology, Neuropsychiatry, Psychosomatics. 2010;2(1):67–8. DOI: 10.14412/2074-2711-2010-74
56. Privalov AA, Kholmanskikh NV, Obukhov NG. Use of reamberin in treatment of patients with the disorders of cerebral circulation of ischemic type. Herald of North-Western State Medical University named after I.I. Mechnikov. 2006;7(1):102–5. EDN: NTJNXR
57. Spichak II, Kopytova EV. Application of polyionic reamberin solution in medicine and experience with its use in pediatric oncology. P.A. Herzen Journal of Oncology. 2018;7(5):47–55. DOI: 10.17116/onkolog2018705147
58. Alasheev AM, Lantsova EV. Efficacy of Mexidol in combination with cerebral revascularization in the treatment of ischemic stroke. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;124(3‑2):67–74. DOI: 10.17116/jnevro202412403267
59. Balykova LA, Radaeva OA, Zaslavskaya KYa, Bely PA, Pavelkina VF, Pyataev NA, Ivanova AYu, Rodoman GV, Kostina NE, Filimonov VB, Simakina EN, Bystritsky DA, Agafyina AS, Koryanova KN, Pushkar DYu. Efficacy and safety of original drug based on hexapeptide succinate in complex COVID-19 therapy in adults hospitalized patients. Pharmacy & Pharmacology. 2022;10(6):573–88. DOI: 10.19163/2307-9266-2022-10-6-573-588
60. Radaeva OA, Balykova LA, Pyataev NA, Zaslavskaya KYa, Kostina YuA, Eremeev VV, Taganov AV, Belyy PA. Features of cytokine status dynamics in patients with COVID-19 using Ambervin® Pulmo. Infectious Diseases: News, Opinions, Training. 2023;12(4):17–24. DOI: 10.33029/2305-3496-2023-12-4-17-24
Review
For citations:
Omarova Kh.G., Pshenichcnaya N.Yu., Gorelov A.V., Shcherbakova V.S., Zaslavskaya K.Ya., Bely P.A., Taganov A.V. Prospects for the use of an original medicine based on hexapeptide succinate for organ protection in various diseases. Pharmacy & Pharmacology. 2025;13(5):338-349. (In Russ.) https://doi.org/10.19163/2307-9266-2025-13-5-338-349