Preview

Фармация и фармакология

Расширенный поиск

ОЦЕНКА РЕСПИРОМЕТРИЧЕСКОЙ ФУНКЦИИ МИТОХОНДРИЙ В УСЛОВИЯХ ПАТОЛОГИЙ РАЗЛИЧНОГО ГЕНЕЗА

https://doi.org/10.19163/2307-9266-2019-7-1-20-31

Полный текст:

Аннотация

Цель исследования – оценить изменение респирометрической функции митохондрий в условиях различных патологий.

Материалы и методы. Исследование выполнено на крысах самцах линии Wistar. В качестве модельных патологий в работе использовали экспериментальную фокальную ишемию головного мозга, черепно-мозговую травму, коронаро-окклюзионный инфаркт миокарда и мышечную дисфункцию. Фокальную ишемию воспроизводили методом необратимой термокоагуляции средней мозговой артерии. Черепно-мозговую травму моделировали методом свободного падения груза. Экспериментальный инфаркт миокарда воспроизводили лигированием нисходящей ветви левой коронарной артерии. Мышечную дисфункцию моделировали методом «принудительного плавания с 20% отягощением». Дыхательную функцию митохондрий оценивали методом респирометрии по изменению потребления кислорода при внесении в среду разобщителей митохондриального дыхания: олигомицин, ротенон и FCCP. Дополнительно оценивали интенсивность процесса гликолиза и активность дыхательных комплексов I, II, IV и V. С целью комплексной оценки респирометрической функции проводили ИФА-исследование с определением концентрации АТФ, митохондриальной АТФ-синтетазы, цитохром-с-оксидазы и НАДФ-оксидазы 4.

Результаты. В ходе проведения исследования установлено, что в условиях экспериментальной ишемии головного мозга, черепно-мозговой травмы, инфаркта миокарда и мышечной дисфункции отмечено ухудшение АТФ-генерирующей способности митохондрий, максимального уровня дыхания и респираторной емкости, при этом снижение общей респирометрической функции сопровождалось усилением процессов гликолиза, которое носило некомпенсированный характер, а также дисфункцией митохондриальных комплексов I, II, IV и V, подтверждаемой увеличением активности НАДФ-оксидазы 4 и снижением активности цитохром-с-оксидазы и АТФ-синтетазы. В итоге наблюдаемые изменения респирометрической функции митохондрий способствовали уменьшению концентрации АТФ в условиях церебральной ишемии – в 3,2 раза (p<0,05), черепно-мозговой травмы – в 2,6 раза (p<0,05), инфаркта миокарда – в 1,8 раза (p<0,05) и мышечной дисфункции – в 4 раза (p<0,05).

Заключение. Основываясь на полученных данных, можно предположить, что в условиях ишемии головного мозга, черепно-мозговой травмы, инфаркта миокарда и мышечной дисфункции наблюдается ухудшение респирометрической функции митохондрий с угнетением синтеза АТФ и усилением процессов гликолиза.

Об авторах

А. В. Воронков
Пятигорский медико-фармацевтический институт – филиал ФГБОУ ВО «Волгоградский государственный медицинский университет» Минздрава России
Россия

Воронков Андрей Владиславович – доктор медицинских наук, доцент, заведующий кафедрой фармакологии с курсом клинической фармакологии

357532, г. Пятигорск, пр. Калинина, 11



Д. И. Поздняков
Пятигорский медико-фармацевтический институт – филиал ФГБОУ ВО «Волгоградский государственный медицинский университет» Минздрава России
Россия

Поздняков Дмитрий Игоревич – кандидат фармацевтических наук, старший преподаватель, кафедра фармакологии с курсом клинической фармакологии

357532, г. Пятигорск, пр. Калинина, 11



С. А. Нигарян
Пятигорский медико-фармацевтический институт – филиал ФГБОУ ВО «Волгоградский государственный медицинский университет» Минздрава России
Россия

Нигарян Сирануш Артуровна – аспирант, кафедра фармакологии с курсом клинической фармакологии

357532, г. Пятигорск, пр. Калинина, 11



Е. И. Хури
Пятигорский медико-фармацевтический институт – филиал ФГБОУ ВО «Волгоградский государственный медицинский университет» Минздрава России
Россия

Хури Елена Игоревна – аспирант, кафедра фармакологии с курсом клинической фармакологии

357532, г. Пятигорск, пр. Калинина, 11



К. А. Мирошниченко
Пятигорский медико-фармацевтический институт – филиал ФГБОУ ВО «Волгоградский государственный медицинский университет» Минздрава России
Россия

Мирошниченко Кирилл Александрович – студент 5 курса фармацевтического факультета 

357532, г. Пятигорск, пр. Калинина, 11



А. В. Сосновская
Пятигорский медико-фармацевтический институт – филиал ФГБОУ ВО «Волгоградский государственный медицинский университет» Минздрава России
Россия

Сосновская Анастасия Викторовна – студентка 4 курса фармацевтического факультета

357532, г. Пятигорск, пр. Калинина, 11



Е. А. Олохова
ФГБОУ ВО «Красноярский государственный медицинский университет им. профессора В.Ф. Войно-Ясенецкого» Минздрава России
Россия

Олохова Елена Александровна – ассистент, кафедра фармакологии и фармацевтического консультирования с курсом ПО

660005, г. Красноярск, ул. Партизана Железняка, д. 1 



Список литературы

1. Lerner C.A., Sundar I.K., Rahman I. Mitochondrial redox system, dynamics, and dysfunction in lung inflammaging and COPD // Int J Biochem Cell Biol. – 2016. – Vol. 81 (Pt В). – P. 294–306. DOI: 10.1016/j.biocel.2016.07.026.

2. Zielonka J., Joseph J., Sikora A., et al.MitochondriaTargeted Triphenylphosphonium-Based Compounds: Syntheses, Mechanisms of Action, and Therapeutic and Diagnostic Applications // Chem Rev. – 2017. – Vol. 117, №15. – P. 10043–10120. DOI: 10.1021/acs.chemrev.7b00042.

3. Menges S., Minakaki G., Schaefer P.M., et al. Alpha-synuclein prevents the formation of spherical mitochondria and apoptosis under oxidative stress // Sci Rep. – 2017. – Vol. 7. – P. 42942. DOI:10.1038/srep42942.

4. Zorov D.B., Juhaszova M., Sollott S.J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release // Physiol Rev. – 2014. – Vol. 94, №3. – P. 909–950. DOI: 10.1152/physrev.00026.2013.

5. Bergman O., Ben-Shachar D. Mitochondrial Oxidative Phosphorylation System (OXPHOS) Deficits in Schizophrenia: Possible Interactions with Cellular Processes // Can J Psychiatry. – 2016. – Vol. 61, №8. – P. 457–469. DOI: 10.1177/0706743716648290.

6. Alston C.L., Rocha M.C., Lax N.Z., Turnbull D.M., Taylor R.W. The genetics and pathology of mitochondrial disease // J Pathol. – 2017. – Vol. 241, №2. – P. 236–250. DOI: 10.1002/path.4809

7. Chinnery P.F. Mitochondrial disease in adults: what’s old and what’s new? // EMBO Mol Med. – 2015. – Vol. 7, №12. – P. 1503–1512. DOI: 10.15252/emmm.201505079.

8. O-Uchi J., Ryu S.Y., Jhun B.S., Hurst S., Sheu S.S. Mitochondrial ion channels/transporters as sensors and regulators of cellular redox signaling // Antioxid Redox Signal. – 2014. – Vol. 21, №6. – P. 987–1006. DOI: 10.1089/ars.2013.5681.

9. Di Meo S., Reed T.T., Venditti P., Victor V.M. Role of ROS and RNS Sources in Physiological and Pathological Conditions // Oxid Med Cell Longev. – 2016. – Vol. 2016. – P. 1245049. DOI: 10.1155/2016/1245049.

10. Ferrari D., Stepczynska A., Los M., Wesselborg S., Schulze-Osthoff K. Differential regulation and ATP requirement for caspase-8 and caspase-3 activation during CD95- and anticancer drug-induced apoptosis // J Exp Med. – 1998. – Vol. 188, №5. – P. 979–984.

11. Khacho M., Tarabay M., Patten D. Acidosis overrides oxygen deprivation to maintain mitochondrial function and cell survival // Nat Commun. – 2014. – Т. 5. DOI: 10.1038/ncomms4550.

12. Bederson J.B., Pitts L.H., Tsuji M., Nishimura M.C., Davis R.L., Bartkowski H. Rat middle cerebral artery occlusion: evaluation of the model and development of a neurologic examination // Stroke. – 1986. – Vol. 17, №3. – P. 472–476.

13. Воронков А.В., Калашникова С.А., Хури Е.И., Поздняков Д.И. Моделирование черепно-мозговой травмы в условиях эксперимента у крыс // Современные проблемы науки и образования. – 2016. – № 1. URL: http://www.science-education.ru/ru/article/view?id=25242.

14. Воронков А.В., Поздняков Д.И., Воронкова М.П. Комплексная валидационная оценка нового методического подхода к изучению физического и психоэмоционального перенапряжения в эксперименте // Фундаментальные исследования. – 2015. – №1–5. – С. 915–919.

15. Сисакян А.С., Оганян В.А., Семерджян A.Б., Петросян М.В., Сисакян С.А., Гуревич М.А. Влияние фактора ангиогенеза на морфофункциональное состояние миокарда у крыс при экспериментальном инфаркте миокарда // Российский кардиоло-гический журнал. – 2008. – Т. 13, № 2. – С. 63–66.

16. Patel S.P., Sullivan P.G., Pandya J.D et al. N-acetylcysteine amide preserves mitochondrial bioenergetics and improves functional recovery following spinal trauma // Exp Neurol. – 2014. – Vol. 257. – P. 95–105. DOI: 10.1016/j.expneurol.2014.04.026.

17. Redmann M., Benavides G.A., Wani W.Y. et al. Methods for assessing mitochondrial quality control mechanisms and cellular consequences in cell culture // Redox Biol. – 2018. – Vol. 17. – P. 59–69. https://doi.org/10.1016/j.redox.2018.04.005.

18. Picard M., Wallace D.C., Burelle Y. The rise of mitochondria in medicine // Mitochondrion. – 2016. – Vol. 30. – P. 105–116. DOI: 10.1016/j.mito.2016.07.003.

19. Lesnefsky E.J., Chen Q., Hoppel C.L. Mitochondrial Metabolism in Aging Heart // Circ Res. – 2016. – Vol. 118, №10. – P. 1593–1611. DOI: 10.1161/CIRCRESAHA.116.307505.

20. Cai Q., Tammineni P. Mitochondrial Aspects of Synaptic Dysfunction in Alzheimer’s Disease // J Alzheimers Dis. – 2017. – Vol. 57, №4. – P. 1087– 1103. DOI: 10.3233/JAD-160726.

21. Boengler K., Kosiol M., Mayr M., Schulz R., Rohrbach S. Mitochondria and ageing: role in heart, skeletal muscle and adipose tissue // J Cachexia Sarcopenia Muscle. – 2017. – Vol. 8, №3. – P. 349– 369. DOI: 10.1002/jcsm.12178.

22. Choudhury A.R., Singh K.K. Mitochondrial determinants of cancer health disparities // Semin Cancer Biol. – 2017. – Vol. 47. – P. 125–146. DOI: 10.1016/j.semcancer.2017.05.001.

23. Szeto H.H., Birk A.V. Serendipity and the discovery of novel compounds that restore mitochondrial plasticity // Clin PharmacolTher. – 2014. – Vol. 96, №6. – P. 672–683. DOI: 10.1038/clpt.2014.174.

24. Dranka B.P., Benavides G.A., Diers A.R., Giordano S., Zelickson B.R., Reily C., Zou L., Chatham J.C., Hill B.G., Zhang J., Landar A., Darley-Usmar VM. Assessing bioenergetic function in response to oxidative stress by metabolic profiling // Free Radic Biol Med. – 2011. – Vol. 51. – P. 1621–1635. DOI: 10.1016/j.freeradbiomed.2011.08.005.

25. Salabei J.K., Gibb A.A., Hill B.G. Comprehensive measurement of respiratory activity in permeabilized cells using extracellular flux analysis // Nat Protoc. – 2014. – Vol. 9, №2. – P. 421–438. DOI: 10.1038/nprot.2014.018

26. Kim Y.M, Kim S.J, Tatsunami R., Yamamura H., Fukai T., Ushio-Fukai M. ROS-induced ROS release orchestrated by Nox4, Nox2, and mitochondria in VEGF signaling and angiogenesis // Am J Physiol Cell Physiol. – 2017. – Vol. 312, №6. – P. C749– C764. DOI: 10.1152/ajpcell.00346.2016.

27. Shanmugasundaram K., Nayak B.K., Friedrichs W.E., Kaushik D., Rodriguez R., Block K. NOX4 functions as a mitochondrial energetic sensor coupling cancer metabolic reprogramming to drug resistance // Nat Commun. – 2017. – Vol. 8, №1. – P. 997. DOI:10.1038/s41467-017-01106-1.

28. Smith M.R., Vayalil P.K., Zhou F., et al. Mitochondrial thiol modification by a targeted electrophile inhibits metabolism in breast adenocarcinoma cells by inhibiting enzyme activity and protein levels // Redox Biol. – 2016. – Vol. 8. – P. 136–148. DOI: 10.1016/j.redox.2016.01.002.


Рецензия

Для цитирования:


Воронков А.В., Поздняков Д.И., Нигарян С.А., Хури Е.И., Мирошниченко К.А., Сосновская А.В., Олохова Е.А. ОЦЕНКА РЕСПИРОМЕТРИЧЕСКОЙ ФУНКЦИИ МИТОХОНДРИЙ В УСЛОВИЯХ ПАТОЛОГИЙ РАЗЛИЧНОГО ГЕНЕЗА. Фармация и фармакология. 2019;7(1):20-31. https://doi.org/10.19163/2307-9266-2019-7-1-20-31

For citation:


Voronkov A.V., Pozdnyakov D.I., Nigaryan S.A., Khouri E.I., Miroshnichenko K.A., Sosnovskaya A.V., Olokhova E.A. EVALUATION OF THE MITOCHONDRIA RESPIROMETRIC FUNCTION IN THE CONDITIONS OF PATHOLOGIES OF VARIOUS GENESES. Pharmacy & Pharmacology. 2019;7(1):20-31. https://doi.org/10.19163/2307-9266-2019-7-1-20-31

Просмотров: 971


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2307-9266 (Print)
ISSN 2413-2241 (Online)