1. Lerner C.A., Sundar I.K., Rahman I. Mitochondrial redox system, dynamics, and dysfunction in lung inflammaging and COPD // Int J Biochem Cell Biol. - 2016. - Vol. 81 (Pt В). - P. 294-306. https://doi.org/10.1016/j.biocel.2016.07.026.
2. Zielonka J., Joseph J., Sikora A., et al.MitochondriaTargeted Triphenylphosphonium-Based Compounds: Syntheses, Mechanisms of Action, and Therapeutic and Diagnostic Applications // Chem Rev. - 2017. - Vol. 117, №15. - P. 10043-10120. https://doi.org/10.1021/acs.chemrev.7b00042.
3. Menges S., Minakaki G., Schaefer P.M., et al. Alpha-synuclein prevents the formation of spherical mitochondria and apoptosis under oxidative stress // Sci Rep. - 2017. - Vol. 7. - P. 42942. https://doi.org/10.1038/srep42942.
4. Zorov D.B., Juhaszova M., Sollott S.J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release // Physiol Rev. - 2014. - Vol. 94, №3. - P. 909-950. https://doi.org/10.1152/physrev.00026.2013.
5. Bergman O., Ben-Shachar D. Mitochondrial Oxidative Phosphorylation System (OXPHOS) Deficits in Schizophrenia: Possible Interactions with Cellular Processes // Can J Psychiatry. - 2016. - Vol. 61, №8. - P. 457-469. https://doi.org/10.1177/0706743716648290.
6. Alston C.L., Rocha M.C., Lax N.Z., Turnbull D.M., Taylor R.W. The genetics and pathology of mitochondrial disease // J Pathol. - 2017. - Vol. 241, №2. - P. 236-250. https://doi.org/10.1002/path.4809
7. Chinnery P.F. Mitochondrial disease in adults: what’s old and what’s new? // EMBO Mol Med. - 2015. - Vol. 7, №12. - P. 1503-1512. https://doi.org/10.15252/emmm.201505079.
8. O-Uchi J., Ryu S.Y., Jhun B.S., Hurst S., Sheu S.S. Mitochondrial ion channels/transporters as sensors and regulators of cellular redox signaling // Antioxid Redox Signal. - 2014. - Vol. 21, №6. - P. 987-1006. https://doi.org/10.1089/ars.2013.5681.
9. Di Meo S., Reed T.T., Venditti P., Victor V.M. Role of ROS and RNS Sources in Physiological and Pathological Conditions // Oxid Med Cell Longev. - 2016. - Vol. 2016. - P. 1245049. https://doi.org/10.1155/2016/1245049.
10. Ferrari D., Stepczynska A., Los M., Wesselborg S., Schulze-Osthoff K. Differential regulation and ATP requirement for caspase-8 and caspase-3 activation during CD95- and anticancer drug-induced apoptosis // J Exp Med. - 1998. - Vol. 188, №5. - P. 979-984.
11. Khacho M., Tarabay M., Patten D. Acidosis overrides oxygen deprivation to maintain mitochondrial function and cell survival // Nat Commun. - 2014. - Т. 5. https://doi.org/10.1038/ncomms4550.
12. Bederson J.B., Pitts L.H., Tsuji M., Nishimura M.C., Davis R.L., Bartkowski H. Rat middle cerebral artery occlusion: evaluation of the model and development of a neurologic examination // Stroke. - 1986. - Vol. 17, №3. - P. 472-476.
13. Воронков А.В., Калашникова С.А., Хури Е.И., Поздняков Д.И. Моделирование черепно-мозговой травмы в условиях эксперимента у крыс // Современные проблемы науки и образования. - 2016. - № 1. URL: http://www.science-education.ru/ru/article/view?id=25242.
14. Воронков А.В., Поздняков Д.И., Воронкова М.П. Комплексная валидационная оценка нового методического подхода к изучению физического и психоэмоционального перенапряжения в эксперименте // Фундаментальные исследования. - 2015. - №1-5. - С. 915-919.
15. Сисакян А.С., Оганян В.А., Семерджян A.Б., Петросян М.В., Сисакян С.А., Гуревич М.А. Влияние фактора ангиогенеза на морфофункциональное состояние миокарда у крыс при экспериментальном инфаркте миокарда // Российский кардиоло-гический журнал. - 2008. - Т. 13, № 2. - С. 63-66.
16. Patel S.P., Sullivan P.G., Pandya J.D et al. N-acetylcysteine amide preserves mitochondrial bioenergetics and improves functional recovery following spinal trauma // Exp Neurol. - 2014. - Vol. 257. - P. 95-105. https://doi.org/10.1016/j.expneurol.2014.04.026.
17. Redmann M., Benavides G.A., Wani W.Y. et al. Methods for assessing mitochondrial quality control mechanisms and cellular consequences in cell culture // Redox Biol. - 2018. - Vol. 17. - P. 59-69. https://doi.org/10.1016/j.redox.2018.04.005.
18. Picard M., Wallace D.C., Burelle Y. The rise of mitochondria in medicine // Mitochondrion. - 2016. - Vol. 30. - P. 105-116. https://doi.org/10.1016/j.mito.2016.07.003.
19. Lesnefsky E.J., Chen Q., Hoppel C.L. Mitochondrial Metabolism in Aging Heart // Circ Res. - 2016. - Vol. 118, №10. - P. 1593-1611. https://doi.org/10.1161/CIRCRESAHA.116.307505.
20. Cai Q., Tammineni P. Mitochondrial Aspects of Synaptic Dysfunction in Alzheimer’s Disease // J Alzheimers Dis. - 2017. - Vol. 57, №4. - P. 1087- 1103. https://doi.org/10.3233/JAD-160726.
21. Boengler K., Kosiol M., Mayr M., Schulz R., Rohrbach S. Mitochondria and ageing: role in heart, skeletal muscle and adipose tissue // J Cachexia Sarcopenia Muscle. - 2017. - Vol. 8, №3. - P. 349- 369. https://doi.org/10.1002/jcsm.12178.
22. Choudhury A.R., Singh K.K. Mitochondrial determinants of cancer health disparities // Semin Cancer Biol. - 2017. - Vol. 47. - P. 125-146. https://doi.org/10.1016/j.semcancer.2017.05.001.
23. Szeto H.H., Birk A.V. Serendipity and the discovery of novel compounds that restore mitochondrial plasticity // Clin PharmacolTher. - 2014. - Vol. 96, №6. - P. 672-683. https://doi.org/10.1038/clpt.2014.174.
24. Dranka B.P., Benavides G.A., Diers A.R., Giordano S., Zelickson B.R., Reily C., Zou L., Chatham J.C., Hill B.G., Zhang J., Landar A., Darley-Usmar VM. Assessing bioenergetic function in response to oxidative stress by metabolic profiling // Free Radic Biol Med. - 2011. - Vol. 51. - P. 1621-1635. https://doi.org/10.1016/j.freeradbiomed.2011.08.005.
25. Salabei J.K., Gibb A.A., Hill B.G. Comprehensive measurement of respiratory activity in permeabilized cells using extracellular flux analysis // Nat Protoc. - 2014. - Vol. 9, №2. - P. 421-438. https://doi.org/10.1038/nprot.2014.018
26. Kim Y.M, Kim S.J, Tatsunami R., Yamamura H., Fukai T., Ushio-Fukai M. ROS-induced ROS release orchestrated by Nox4, Nox2, and mitochondria in VEGF signaling and angiogenesis // Am J Physiol Cell Physiol. - 2017. - Vol. 312, №6. - P. C749- C764. https://doi.org/10.1152/ajpcell.00346.2016.
27. Shanmugasundaram K., Nayak B.K., Friedrichs W.E., Kaushik D., Rodriguez R., Block K. NOX4 functions as a mitochondrial energetic sensor coupling cancer metabolic reprogramming to drug resistance // Nat Commun. - 2017. - Vol. 8, №1. - P. 997. https://doi.org/10.1038/s41467-017-01106-1.
28. Smith M.R., Vayalil P.K., Zhou F., et al. Mitochondrial thiol modification by a targeted electrophile inhibits metabolism in breast adenocarcinoma cells by inhibiting enzyme activity and protein levels // Redox Biol. - 2016. - Vol. 8. - P. 136-148. https://doi.org/10.1016/j.redox.2016.01.002.