STUDY OF ANTIATHEROSCLEROTIC AND ENDOTHELIOPROTECTIVE ACTIVITY OF PEPTIDE AGONISTS OF EPOR/CD131 HETERORECEPTOR
https://doi.org/10.19163/2307-9266-2020-8-2-100-111
Abstract
Introduction. The drugs affecting a mitochondrial dysfunction, oxidative stresses, apoptosis and inflammation of the vascular wall, have a high potential for the prevention and treatment of atherosclerotic lesions. In this regard, the use of EPOR/CD131 heteroreceptor agonists which have a similar spectrum of pharmacological effects, is one of the promising strategies in the treatment of cardiovascular diseases.
Materials and Methods. The study was carried out on 68 C57Bl/6J male mice. Atherosclerosis was simulated in transgenic animals with an endotheliospecific knockdown of the Polg gene by simulating a balloon injury and keeping on a Western diet. Then, the studied drugs were injected once every 3 days at the dose of 20 μg/kg for 27 days. On the 28-th day, the animals were euthanized and the area of atherosclerotic plaques was assessed. The gene expression associated with the processes of inflammation, antioxidant protection, apoptosis, and angiogenesis was also determined in the aortic tissues. In addition, the endothelium protective effect of peptides on primary cultures of endothelial cells of wild and transgenic Polg-D257A mice was studied.
Results. No statistically significant effect of drugs on the area of lipid infiltration have been found. However, the studied peptides have significantly reduced the expression of proinflammatory genes (iNos, Icam1, Vcam1, Sele, Il6, Tnfa), the genes associated with angiogenesis (Vegfa, Kdr, and Hif1a), the expression of proapoptic factors; they decreased the Bax/Bcl-2 ratio by more than 1.5 times. In addition, when supplemented with H2 O2 in vitro, peptides dose-dependently increased endothelial cell survival.
Conclusion. The erythropoietin-based peptides can be used to improve the functional state of the vascular wall against the background of atherosclerotic lesions and have a depressing effect on pathobiological processes associated with a mitochondrial dysfunction. In addition, the studied peptides have a significant endothelial protective effect in the induction of oxidative stress in vitro.
About the Authors
Olesya A. PuchenkovaRussian Federation
6th year student of the Medical Institute
85, Pobeda Str., Belgorod, 30801
Sergey V. Nadezhdin
Russian Federation
Candidate of Sciences (Biology), Researcher, the Research Institute of Pharmacology of Living Systems
85, Pobeda Str., Belgorod, 30801
Vladislav O. Soldatov
Russian Federation
Junior Researcher, Center for Collective Use of IBG RAS
34/5, Vavilov Str., Moscow, 11933
Maxim A. Zhuchenko
Russian Federation
Candidate of Sciences (Biology), the Head of the Sector
1, Academician Kurchatov Square, Moscow, 123098
Diana S. Korshunova
Russian Federation
Junior Researcher
34/5, Vavilov Str., Moscow, 11933
Marina V. Kubekina
Russian Federation
postgraduate student, junior researcher at the Center for High-Precision Editing and Genetic Technologies for Biomedicine
34/5, Vavilov Str., Moscow, 11933
Evgeny N. Korshunov
Russian Federation
The head of the vivarium, junior researcher
34/5, Vavilov Str., Moscow, 11933
Liliya V. Korokina
Russian Federation
Candidate of Sciences (Medicine), Assistant Professor, Researcher, the Research Institute of Pharmacology of Living Systems
85, Pobeda Str., Belgorod, 30801
Polina A. Golubinskaya
Russian Federation
The Head of the Clinical Diagnostic Laboratory
22, Revolution of 1905 Str., Voronezh, 394030
Aleksandr L. Kulikov
Russian Federation
Researcher, Research Institute of Pharmacology of Living Systems
85, Pobeda Str., Belgorod, 30801
Vladimir V. Gureev
Russian Federation
Doctor of Sciences (Medicine), Associate Professor, Professor of the Department of Pharmacology and Clinical Pharmacology
85, Pobeda Str., Belgorod, 30801
Vladimir M. Pokrovskiy
Russian Federation
5th year student of the Medical Institute
85, Pobeda Str., Belgorod, 30801
Evgeniy A. Patrakhanov
Russian Federation
5th year student of the Medical Institute
85, Pobeda Str., Belgorod, 30801
Petr R. Lebedev
Russian Federation
5th year student of the Medical Institute
85, Pobeda Str., Belgorod, 30801
Tatyana A. Denisyuk
Russian Federation
Doctor of Sciences (Medicine), Associate Professor of the Department of Pharmacology
3, Karl Marx Str., Kursk, 305041
Veronika S. Belyaeva
Russian Federation
post-graduate student of the Department of Pharmacology and Clinical Pharmacology
85, Pobeda Str., Belgorod, 30801
Evgeniya A. Movchan
Russian Federation
postgraduate student of the Department of Pharmacology and Clinical Pharmacology
85, Pobeda Str., Belgorod, 30801
Elizaveta I. Lepetukha
Russian Federation
postgraduate student of the Department of Pharmacology and Clinical Pharmacology
85, Pobeda Str., Belgorod, 30801
Mikhail V. Pokrovskiy
Russian Federation
Doctor of Sciences (Medicine), Professor of the Department of Pharmacology and Clinical Pharmacology, the Head of the Research Institute of Pharmacology of Living Systems
85, Pobeda Str., Belgorod, 30801
References
1. Zárate A, Manuel-Apolinar L, Basurto L, De la Chesnaye E, Saldívar I. Cholesterol and atherosclerosis. Historical considerations and treatment. Arch Cardiol Mex. 2016; 86(2):163-9. DOI: 10.1016/j.acmx.2015.12.002.
2. Davignon J, Ganz P. Role of endothelial dysfunction in atherosclerosis. Circulation; 2004; 109(23):27‐32. doi:10.1161/01.CIR.0000131515.03336.f8.
3. Davies PF. Hemodynamic shear stress and the endothelium in cardiovascular pathophysiology. Nat ClinPractCardiovasc Med. 2009; 6(1):16‐26. DOI: 10.1038/ncpcardio1397.
4. Sorokin A, Kotani K, Bushueva O, Taniguchi N, Lazarenko V. The cardio-ankle vascular index and ankle-brachial index in young Russians . Journal of atherosclerosis and thrombosis. 2015; 22(2):211-8. DOI: 10.5551/jat.26104.
5. Polonikov A., Bykanova M, Ponomarenko I, Sirotina S, Bocharova A, Vagaytseva K, Shvetsov Y. The contribution of CYP2C gene subfamily involved in epoxygenase pathway of arachidonic acids metabolism to hypertension susceptibility in Russian population. Clinical and Experimental Hypertension. 2017; 39(4):306-311. DOI: 10.1080/10641963.2016.1246562.
6. Bennett M.R, Sinha S, Owens G.K. Vascular Smooth Muscle Cells in Atherosclerosis. Circ Res. 2016; 118(4):692‐702. DOI: 10.1161/CIRCRESAHA.115.306361.
7. Kattoor AJ, Pothineni NVK, Palagiri D, Mehta JL. Oxidative Stress in Atherosclerosis. CurrAtheroscler Rep. 2017; 19(11):42s DOI: 10.1007/s11883-017-0678-6.
8. Quintero M, Colombo SL, Godfrey A, Moncada S. Mitochondria as signaling organelles in the vascular endothelium. Proc. Natl. Acad. Sci. U.S.A. 2006; 103:5379–5384. DOI: 10.1073/pnas.0601026103.
9. Brines M, Patel NS, Villa P, et al. Nonerythropoietic, tissue-protective peptides derived from the tertiary structure of erythropoietin. Proc Natl AcadSci U S A. 2008; 105(31):10925-10930. DOI: 10.1073/pnas.0805594105.
10. Korokin MV, Soldatov VO, Tietze AA, Golubev MV, Belykh AE, Kubekina MV, Puchenkova OA, Denisyuk TA, Gureyev VV, Pokrovskaya TG, Gudyrev OS, Zhuchenko MA, Zatolokina MA, Pokrovskiy MV. 11-amino acid peptide imitating the structure of erythropoietin α-helix b improves endothelial function, but stimulates thrombosis in rats. Pharmacy & Pharmacology. 2019; 7(6):312-320. Russian. DOI: 10.19163/2307-9266-2019-7-6-312-320.
11. Korokin M, Gureev V, Gudyrev O, Golubev I, Korokina L, Peresypkina A, Pokrovskaia T, Lazareva G, Soldatov V, Zatolokina M, Pobeda A, Avdeeva E, Beskhmelnitsyna E, Denisyuk T, Avdeeva N, Bushueva O, Pokrovskii M. Erythropoietin Mimetic Peptide (pHBSP) Corrects Endothelial Dysfunction in a Rat Model of Preeclampsia. Int. J. Mol. Sci. 2020; 21:6759. DOI: 10.3390/ijms21186759.
12. Golubev IV, Gureev VV, Korokin MV, Zatolokina MA, Avdeeva EV, Gureeva AV, Rozhkov IS, Serdyuk EA, Soldatova VA. Preclinical study of innovative peptides mimicking the tertiary structure of the α-helix B of erythropoietin. Research Results in Pharmacology. 2020; 6(2):85-96. DOI: 10.3897/rrpharmacology.6.55385.
13. Trifunovic A, Wredenberg A, Falkenberg M. et al. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature. 2004; 429:417–423. DOI: 10.1038/nature02517.
14. Kujoth GC, Hiona A, Pugh TD, et al. Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science. 2005. 309(5733):481-484. DOI: 10.1126/science.1112125.
15. Zvartsev RV, Korshunova DS, Gorshkova EA., et al. Neonatal Lethality and Inflammatory Phenotype of the New Transgenic Mice with Overexpression of Human Interleukin-6 in Myeloid Cells. DoklBiochemBiophys. 2018; 483(1):344-347. DOI: 10.1134/S1607672918060157.
16. Stubbendorff M, Hua X, Deuse T, et al. Inducing myointimal hyperplasia versus atherosclerosis in mice: an introduction of two valid models. J Vis Exp. 2014; 87:51459. DOI: 10.3791/51459.
17. Tediashvili G, Wang D, Reichenspurner H, Deuse T, Schrepfer S. Balloon-based Injury to Induce Myointimal Hyperplasia in the Mouse Abdominal Aorta. J Vis Exp. 2018; 132:56477. DOI: 10.3791/56477.
18. Molina-Sánchez P, Andrés V. Isolation of Mouse Primary Aortic Endothelial Cells by Selection with Specific Antibodies. Methods in Mouse Atherosclerosis. Methods in Molecular Biology. Humana Press, New York, NY. 2015; 1339. DOI: 10.1007/978-1-4939-2929-0_7.
19. Stumpf JD, Saneto RP, Copeland WC. Clinical and molecular features of POLG-related mitochondrial
20. Kusov P, Deikin A. Developing Novel Transgenic Mice Model Of Atherogenesis With Conditional Oxidative Stress By Introduction Of Epithelium-Specific Inducible Mitochondrial Polg With Mutagenic Activity. Atherosclerosis. 2019; 287:99 s..DOI: 10.1016/j.atherosclerosis.2019.06.287.
21. Poznyak AV, Silaeva YY, Orekhov AN, Deykin AV. Animal models of human atherosclerosis: current progress. Braz J Med Biol Res. 2020. 53(6):9557 s. DOI: 10.1590/1414-431x20209557.
22. Mushenkova NV, Summerhill VI, Silaeva YY, Deykin AV, Orekhov AN. Modelling of atherosclerosis in genetically modified animals. Am J Transl Res. 2019.11(8):4614-4633.
23. Volobueva AS, Orekhov AN, Deykin AV. An update on the tools for creating transgenic animal models of human diseases - focus on atherosclerosis. Braz J Med Biol Res. 2019; 52(5):8108. DOI: 10.1590/1414-431X20198108.
24. Bittorf T, Jaster R, Lüdtke B, Kamper B, Brock J. Requirement for JAK2 in erythropoietin-induced signalling pathways . Cell Signal. 1997; 9(1):85-89. DOI: 10.1016/s0898-6568(96)00121-0.
25. Peng B, Kong G, Yang C. et al. Erythropoietin and its derivatives: from tissue protection to immune regulation. Cell Death Dis. 2020; 11(79). DOI: 10.1038/s41419-020-2276-8.
26. Warren JS, Zhao Y, Yung R, Desai A. Recombinant human erythropoietin suppresses endothelial cell apoptosis and reduces the ratio of Bax to Bcl-2 proteins in the aortas of apolipoprotein E-deficient mice. Journal of Cardiovascular Pharmacology. 2011; 57(4):424-433. DOI: 10.1097/fjc.0b013e31820d92fd.
27. Bäck M, Yurdagul A, Tabas I. et al. Inflammation and its resolution in atherosclerosis: mediators and therapeutic opportunities. Nat Rev Cardiol. 2019; 16:389–406. DOI: 10.1038/s41569-019-0169-2.
28. Ley K, Huo Y. VCAM-1 is critical in atherosclerosis. J Clin Invest. 2001; 107(10):1209-1210. DOI: 10.1172/JCI13005.
29. Fatkhullina AR, Peshkova IO, Koltsova EK. The Role of Cytokines in the Development of Atherosclerosis. Biochemistry (Mosc). 2016; 81(11):1358-1370. DOI: 10.1134/S0006297916110134.
30. Fotis L, Agrogiannis G, Vlachos IS, Pantopoulou A, Margoni A, Kostaki M, Verikokos C, Tzivras D, Mikhailidis DP, Perrea D. Intercellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1 at the early stages of atherosclerosis in a rat model. In Vivo. 2012; 26:243–250.
31. Nairz M, Sonnweber T, Schroll A, Theurl I, Weiss G. The pleiotropic effects of erythropoietin in infection and inflammation. Microbes Infect. 2012; 14(3):238-246. DOI: 10.1016/j.micinf.2011.10.005.
32. Liu Y, Luo B, Shi R, et al. Nonerythropoietic Erythropoietin-Derived Peptide Suppresses Adipogenesis, Inflammation, Obesity and Insulin Resistance. Sci Rep. 2015:515134. DOI: 10.1038/srep15134.
33. Kimáková P, Solár P, Solárová Z, Komel R, Debeljak N. Erythropoietin and Its Angiogenic Activity Int J Mol Sci. 2017; 18(7):1519. DOI: 10.3390/ijms18071519.
34. Michel JB, Martin-Ventura JL, Nicoletti A, Ho-Tin-Noe B. Pathology of human plaque vulnerability: mechanisms and consequences of intraplaquehaemorrhages. Atherosclerosis. 2014; 234(2) 311–319.
35. Camaré C, Pucelle M, Nègre-Salvayre A, Salvayre R. Angiogenesis in the atherosclerotic plaque. Redox Biol. 2017; 12:18-34. DOI: 10.1016/j.redox.2017.01.007.
Review
For citations:
Puchenkova O.A., Nadezhdin S.V., Soldatov V.O., Zhuchenko M.A., Korshunova D.S., Kubekina M.V., Korshunov E.N., Korokina L.V., Golubinskaya P.A., Kulikov A.L., Gureev V.V., Pokrovskiy V.M., Patrakhanov E.A., Lebedev P.R., Denisyuk T.A., Belyaeva V.S., Movchan E.A., Lepetukha E.I., Pokrovskiy M.V. STUDY OF ANTIATHEROSCLEROTIC AND ENDOTHELIOPROTECTIVE ACTIVITY OF PEPTIDE AGONISTS OF EPOR/CD131 HETERORECEPTOR. Pharmacy & Pharmacology. 2020;8(2):100-111. https://doi.org/10.19163/2307-9266-2020-8-2-100-111