Preview

Фармация и фармакология

Расширенный поиск

ИЗУЧЕНИЕ ВЛИЯНИЯ КОЛИЧЕСТВА ЗАПУСКОВ AUTODOCK 4 НА СРЕДНЕКВАДРАТИЧЕСКОЕ ОТКЛОНЕНИЕ РЕЗУЛЬТАТОВ ДОКИНГА

https://doi.org/10.19163/2307-9266-2020-8-6-476-480

Полный текст:

Аннотация

Цель. Известно, что количество запусков докинга с AutoDock 4 играет важную роль в достоверности получаемых результатов. Чем больше количество запусков, тем больше достоверных результатов докинга Однако точно не известно, как наиболее оптимально работает докинг с AutoDock 4. Это исследование направлено на определение влияния количества запусков процесса докинга в AutoDock 4 на достоверность результатов.

Материалы и методы. В качестве метода исследования использовали процесс редокинга с AutoDock 4.2.6. Используемый рецептор представляет собой рецептор эстрогена с эталонным лигандом эстрадиола (PDB ID 1GWR). Варьировали количество прогонов от 10 до 100, кратные 10. Наблюдаемыми параметрами были RMSD, свободная энергия связывания, константы ингибирования, аминокислотные остатки и количество водородных связей.

Результаты. Все эксперименты вырабатывают идентичную свободную энергию связи, где максимальная разница в константе ингибирования составляет всего 0,06 нМ. Наименьшее среднеквадратичное отклонение (RMSD) определяется количеством прогонов, равным 60, при значении среднеквадратичного отклонения, равного 0,942. Установлено, что между количеством прогонов и пространственным выравниванием (RMSD) нет линейной зависимости, так как коэффициент корреляции (R) равен 0,4607.

Заключение. В целом, количество запусков не оказывает значительного вклада в достоверность результатов процесса докинга с AutoDock 4. Однако, эти результаты справедливы только с рецепторами, использованными в данном исследовании.

Об авторах

M.P. Ф. Пратама
Университет Айрланга Университет Мухаммадии Палангкарая
Индонезия

кандидат фармацевтических наук, докторант факультета фармацевтической химии Университета Эйрланга, Индонезия; доцент кафедры медицинской химии фармацевтического факультета Палангкарайского университета Мухаммадии



C. Сисвандоно
Университет Айрланга
Индонезия

профессор медицинской химии факультета фармацевтической химии Университета Эрлангга, Индонезия



Список литературы

1. Ferreira L.G., Dos Santos R.N., Oliva G., Andricopulo A.D. Molecular docking and structure-based drug design strategies // Molecules. – 2015. – Vol.20. – No.7. – P.13384–13421. DOI:10.3390/molecules200713384.

2. Sliwoski G., Kothiwale S., Meiler J., Lowe E.W. Computational Methods in Drug Discovery // Pharmacological Reviews. – 2014. – Vol.66. – No.1. – P.334-395. DOI:10.1124/pr.112.007336.

3. Pagadala N.S., Syed K., Tuszynski J. Software for molecular docking: a review // Biophysical Reviews. – 2017. – Vol.9. – No.2. – P.91-102. DOI:10.1007/s12551-016-0247-1.

4. Kontoyianni M., McClellan L.M., Sokol G.S. Evaluation of docking performance: comparative data on docking algorithms // Journal of Medicinal Chemistry. – 2004. – Vol.47. – No.3. – P.558-65. DOI:10.1021/jm0302997

5. Kufareva I., Abagyan R. Methods of protein structure comparison // Methods in Molecular Biology. – 2012. – No.857. – P.231-257. DOI:10.1007/978-1-61779-588-6_10.

6. Guedes I.A., de Magalhaes C.S., Dardenne L.E. Receptor–ligand molecular docking // Biophysical Reviews. – 2014. – Vol.6. – No.1. – P.75-87. DOI:10.1007/s12551-013-0130-2.

7. Lape M., Elam C., Paula S. Comparison of current docking tools for the simulation of inhibitor binding by the transmembrane domain of the sarco/endoplasmic reticulum calcium ATPase // Biophysical Chemistry. – 2010. – Vol.150. – No.1-3. – P.88-97. DOI:10.1016/j.bpc.2010.01.011.

8. Ramirez D., Caballero J. Is It Reliable to Take the Molecular Docking Top Scoring Position as the Best Solution without Considering Available Structural Data? // Molecules. – 2018. – Vol.23. – No.5. – P.1038. DOI:10.3390/molecules23051038.

9. Forli S., Huey R., Pique M.E., Sanner M., Goodsell D.S., Olson A.J. Computational protein-ligand docking and virtual drug screening with the AutoDock suite // Nature Protocols. – 2016. – Vol.11. – No.5. – P.905-919. DOI:10.3390/molecules23051038.

10. Arba M., Yamin, Ihsan S., Tjahjono D.H. Computational approach toward targeting the interaction of porphyrin derivatives with Bcl-2 // Journal of Applied Pharmaceutical Science. – 2018. – Vol.8. – No.12. – P.60-66. DOI:10.7324/JAPS.2018.81208.

11. Atkovska K., Samsonov S.A., Pszkowski-Rogacz M., Pisabarro M.T. Multipose Binding in Molecular Docking // International Journal of Molecular Sciences. – 2014. – Vol.15. – No.2. – P.2622-2645. DOI:10.3390/ijms15022622.

12. Feinstein W.P., Brylinski M. Calculating an optimal box size for ligand docking and virtual screening against experimental and predicted binding pockets // Journal of Cheminformatics. – 2015. – No.7. – P.18. DOI:10.1186/s13321-015-0067-5.


Для цитирования:


Пратама M.Ф., Сисвандоно C. ИЗУЧЕНИЕ ВЛИЯНИЯ КОЛИЧЕСТВА ЗАПУСКОВ AUTODOCK 4 НА СРЕДНЕКВАДРАТИЧЕСКОЕ ОТКЛОНЕНИЕ РЕЗУЛЬТАТОВ ДОКИНГА. Фармация и фармакология. 2020;8(6):476-480. https://doi.org/10.19163/2307-9266-2020-8-6-476-480

For citation:


Pratama M., Siswandono S. NUMBER OF RUNS VARIATIONS ON AUTODOCK 4 DO NOT HAVE A SIGNIFICANT EFFECT ON RMSD FROM DOCKING RESULTS. Pharmacy & Pharmacology. 2020;8(6):476-480. https://doi.org/10.19163/2307-9266-2020-8-6-476-480

Просмотров: 201


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2307-9266 (Print)
ISSN 2413-2241 (Online)