Preview

Фармация и фармакология

Расширенный поиск

ВЛИЯНИЕ НЕКОТОРЫХ D-МЕТАЛЛОВ НА ОБРАЗОВАНИЕ КОНЕЧНЫХ ПРОДУКТОВ ГЛИКИРОВАНИЯ, АГРЕГАЦИЮ И АМИЛОИДНУЮ ТРАНСФОРМАЦИЮ АЛЬБУМИНА В РЕАКЦИИ ГЛИКИРОВАНИЯ

https://doi.org/10.19163/2307-9266-2021-9-4-306-317

Полный текст:

Аннотация

Цель. Исследование влияния фактора протекания реакции гликирования бычьего сывороточного альбумина (БСА) глюкозой и фактора присутствия в среде реакции гликирования катионов d-металлов (никель (II), кобальт (II), железо (II), железо (III), медь (II) или цинк (II)) на процесс агрегации и амилоидной трансформации БСА. Установление влияния указанных катионов на интенсивность образования конечных продуктов реакции гликирования (КПГ) и интенсивность флуоресценции аминокислот тирозин и триптофан.

Материалы и методы. Реагенты в реакции гликирования: глюкоза (в конечной концентрации 0,36 М), БСА (в конечной концентрации 1 мг/мл), деионизированная вода, один из катионов d-металлов, а именно никель (II), кобальт (II), железо (II), железо (III), медь (II) или цинк (II) (в виде соли хлорида, сульфата или нитрата, в конечной концентрации 40 мкМ). Условия протекания реакции гликирования: инкубация 24 ч при температуре 60°С. Исследовано влияние двух факторов (фактор протекания гликирования и фактор присутствия иона d-металла в реакционной среде) на концентрацию КПГ, образуемых в ходе реакции гликирования, на интенсивность флуоресценции аминокислот триптофан и тирозин, на агрегацию БСА и на способность БСА к амилоидной трансформации в описанных условиях.

Результаты. Установлено, что исследуемые факторы статистически значимо влияют на рассматриваемые параметры. Наивысшая активность установлена для иона меди (II), который интенсифицирует образование КПГ в пробах, где протекает гликирование, снижает интенсивность флуоресценции аминокислот триптофан и тирозин (самостоятельно и усиливая эффект на фоне гликирования), вызывает агрегацию БСА (самостоятельно и усиливая эффект на фоне гликирования), вызывает амилоидную трансформацию БСА (самостоятельно и усиливая эффект на фоне гликирования). Наименее выражены перечисленные эффекты были в реакционных средах с добавлением никеля (II) или кобальта (II). Данные катионы снижают интенсивность образования КПГ, не вызывают образования белковых агрегатов. В присутствии глюкозы никель (II) слабо подавляет интенсивность флуоресценции триптофана и тирозина, незначительно усиливает амилоидную трансформацию БСА. Кобальт (II) незначительно подавляет амилоидную трансформацию БСА. Катионы железа (II), железа (III) и цинка (II) по выраженности и характеру эффектов занимают промежуточное положение между медью (II) с одной стороны, и никелем (II) и кобальтом (II) с другой стороны, в разной степени сочетая влияние на образование КПГ, интенсивность флуоресценции триптофана и тирозина, агрегацию и амилоидную трансформацию БСА. В отсутствии глюкозы способность цинка (II) вызывать образование белковых агрегатов оказалась наивысшей, а его способность стимулировать амилоидную трансформацию БСА соответствовала таковой у меди (II).

Заключение. Присутствие катионов d-металлов влияет на интенсивность образования КПГ в реакции гликирования, влияет на интенсивность амилоидной трансформации БСА и на образование агрегатов белка. В ряду таких ионов, как никель (II), кобальт (II), железо (II), железо (III), медь (II) и цинк (II), ионы меди (II) оказались наиболее активными по способности ускорять образование КПГ, подавлять флуоресценцию триптофана и тирозина, усиливать агрегацию и амилоидную трансформацию БСА в реакции гликирования. Наименьшая выраженность указанных свойств отмечается для ионов никеля (II) и кобальта (II)

Об авторах

Р. А. Литвинов
1. Федеральное государственное бюджетное образовательное учреждение высшего образования «Волгоградский государственный медицинский университет» Министерства здравоохранения Российской Федерации 400131, Россия, г. Волгоград, площадь Павших Борцов, д. 1 2. Государственное бюджетное учреждение «Волгоградский медицинский научный центр» 400131, Россия, г. Волгоград, площадь Павших Борцов, д. 1
Россия

кандидат медицинских наук, старший научный сотрудник лаборатории метаботропных лекарственных средств отдела фармакологии и биоинформатики Научного центра инновационных лекарственных средств с опытно-промышленным производством Волгоградского государственного медицинского университета; научный сотрудник лаборатории экспериментальной фармакологии ГБУ «Волгоградский медицинский научный центр»



А. В. Гонтарева
Федеральное государственное бюджетное образовательное учреждение высшего образования «Волгоградский государственный медицинский университет» Министерства здравоохранения Российской Федерации 400131, Россия, г. Волгоград, площадь Павших Борцов, д. 1
Россия

студент 6-го курса, специальность «Медицинская биохимия»,
ФГБОУ ВО «Волгоградский государственный медицинский университет» Минздрава России, соисполнитель гранта Президента Российской Федерации для поддержки молодых ученых, кандидатов наук МК-1887.2020.7



Л. Э. Усмиянова
Федеральное государственное бюджетное образовательное учреждение высшего образования «Волгоградский государственный медицинский университет» Министерства здравоохранения Российской Федерации 400131, Россия, г. Волгоград, площадь Павших Борцов, д. 1
Россия

студент 6-го курса, специальность «Медицинская биохимия»,
ФГБОУ ВО «Волгоградский государственный медицинский университет» Минздрава России, соисполнитель гранта Президента Российской Федерации для поддержки молодых ученых, кандидатов наук МК-1887.2020.7



Д. Р. Клименко
Федеральное государственное бюджетное образовательное учреждение высшего образования «Волгоградский государственный медицинский университет» Министерства здравоохранения Российской Федерации 400131, Россия, г. Волгоград, площадь Павших Борцов, д. 1
Россия

студентка 4-го курса, специальность «Фармация», ФГБОУ ВО «Волгоградский государственный медицинский университет» Минздрава России



Список литературы

1. Perrone A., Giovino A., Benny J., Martinelli F. Advanced Glycation End Products (AGEs): Biochemistry, Signaling, Analytical Methods, and Epigenetic Effects // Oxid Med Cell Longev. – 2020. – Vol. 2020. – Art. No.3818196. DOI: 10.1155/2020/3818196.

2. Chaudhuri J., Bains Y., Guha S., Kahn A., Hall D., Bose N., Gugliucci A., Kapahi P. The Role of Advanced Glycation End Products in Aging and Metabolic Diseases: Bridging Association and Causality // Cell Metab. – 2018. – Vol. 28, No.3. – P. 337–352. DOI: 10.1016/j.cmet.2018.08.014.

3. Yu L., Chen Y., Xu Y., He T., Wei Y., He R. D-ribose is elevated in T1DM patients and can be involved in the onset of encephalopathy // Aging (Albany NY). – 2019. – Vol. 11, No.14. – P. 4943–4969. DOI: 10.18632/aging.102089.

4. Akhter F., Chen D., Akhter A., Sosunov A.A., Chen A., McKhann G.M., Yan S.F., Yan S.S.D. High Dietary Advanced Glycation End Products Impair Mitochondrial and Cognitive Function // J Alzheimers Dis. – 2020. – Vol. 76, No.1. – P. 165–178. DOI: 10.3233/JAD-191236.

5. Vitek M., Bhattacharya K., Glendening J., Stopa E., Vlassara H., Bucala R., Manogue K., Cerami A. Advanced glycation end products contribute to amyloidosis in Alzheimer disease // Proc Natl Acad Sci USA. – 1994. – Vol. 91, No.11. – P. 4766–4770. DOI: 10.1073/pnas.91.11.4766.

6. König A., Vicente M.H., Outeiro T.F. Alpha-Synuclein Glycation and the Action of Anti-Diabetic Agents in Parkinson’s Disease // J Parkinsons Dis. – 2018. – Vol. 8, No.1. – P. 33–43. DOI: 10.3233/JPD-171285.

7. Gan W.J., Gao C.L., Zhang W.Q., Gu J.L., Zhao T.T., Guo H.L., Zhou H., Xu Y., Yu L.L., Li L.F., Gui D.K., Xu Y.H. Kuwanon G protects HT22 cells from advanced glycation end product-induced damage // Exp Ther Med. – 2021. – Vol. 21, No.5. – Art. No.425. DOI: 10.3892/etm.2021.9869.

8. Kong Y., Wang F., Wang J., Liu C., Zhou Y., Xu Z., Zhang C., Sun B., Guan Y. Pathological Mechanisms Linking Diabetes Mellitus and Alzheimer’s Disease: the Receptor for Advanced Glycation End Products (RAGE) // Front. Aging Neurosci. – 2020. – Vol. 12. – Art. No.217. DOI: 10.3389/fnagi.2020.00217.

9. Yan S.S., Chen D., Yan S., Guo L., Du H., Chen J.X. RAGE is a key cellular target for Abeta-induced perturbation in Alzheimer’s disease // Front Biosci (Schol Ed). – 2012. – Vol. 4. – P. 240–250. DOI: 10.2741/265.

10. Kim D.K., Song J.W., Park J.D., Choi B.S. Copper induces the accumulation of amyloid-beta in the brain // Mol. Cell. Toxicol. – 2013. – Vol. 9. – P. 57–66. DOI: 10.1007/s13273-013-0009-0.

11. Piras S., Furfaro A.L., Domenicotti C., Traverso N., Marinari U.M., Pronzato M.A., Nitti M. RAGE Expression and ROS Generation in Neurons: Differentiation versus Damage // Oxid Med Cell Longev. – 2016. – Vol. 2016. – Art. No.9348651. DOI: 10.1155/2016/9348651.

12. Li X.-H., Du L.-L., Cheng X.-S., Jiang X., Zhang Y., Lv B.-L., Liu R., Wang J.-Z., Zhou X.-W. Glycation exacerbates the neuronal toxicity of β-amyloid // Cell Death Dis. – 2013. – Vol. 4, No.6. – e673. DOI: 10.1038/cddis.2013.180.

13. Iannuzzi C., Irace G., Sirangelo I. Role of glycation in amyloid: Effect on the aggregation process and cytotoxicity // IntechOpen – 2016. – 165 p. DOI: 10.5772/62995.

14. Sirangelo I., Iannuzzi C. Understanding the Role of Protein Glycation in the Amyloid Aggregation Process // Int J Mol Sci. – 2021. – Vol. 22, No.12. – Art. No. 6609. DOI: 10.3390/ijms22126609.

15. Milordini G., Zacco E., Percival M., Puglisi R., Dal Piaz F., Temussi P., Pastore A. The Role of Glycation on the Aggregation Properties of IAPP // Front Mol Biosci. – 2020. – Vol. 7. – Art. No. 104. DOI: 10.3389/fmolb.2020.00104.

16. Emendato A., Milordini G., Zacco E., Sicorello A., Dal Piaz F., Guerrini R., Thorogate R., Picone D., Pastore A. Glycation affects fibril formation of Aβ peptides // J Biol Chem. – 2018. – Vol. 293, No.34. – P. 13100–13111. DOI: 10.1074/jbc.RA118.002275.

17. Bhuiyan M.N., Mitsuhashi S., Sigetomi K., Ubukata M. Quercetin inhibits advanced glycation end product formation via chelating metal ions, trapping methylglyoxal, and trapping reactive oxygen species // Biosci Biotechnol Biochem. – 2017. – Vol. 81, No.5. – P. 882–890. DOI: 10.1080/09168451.2017.1282805.

18. Wu Q., Li S.Y., Yang T., Xiao J., Chua Q.M., Li T., Xie B.J., Sun Z.D. Inhibitory effect of lotus seedpod oligomeric procyanidins on advanced glycation end product formation in a lactose-lysine model system // Electronic Journal of Biotechnology. – 2015. – Vol. 18, No.2. – P. 68–76. DOI: 10.1016/j.ejbt.2014.10.005.

19. Clayton P.T. Inherited disorders of transition metal metabolism: an update // J Inherit Metab Dis. – 2017. – Vol. 40, No.4. – P. 519–529. DOI: 10.1007/s10545-017-0030-x.

20. Serban A.I., Condac E., Costache M., Dinischiotu A. The relationship between ages, Cu2+ and crosslinking of collagen // Revue Roumaine de Chimie. – 2009. – Vol. 54, No.1. – P. 93–101.

21. Bavkar L.N., Patil R.S., Rooge S.B., Nalawade M.L., Arvindekar A.U. Acceleration of protein glycation by oxidative stress and comparative role of antioxidant and protein glycation inhibitor // Mol Cell Biochem. – 2019. – Vol. 459. – P. 61–71. DOI: 10.1007/s11010-019-03550-7.

22. Sadakane Y., Kawahara M. Implications of Metal Binding and Asparagine Deamidation for Amyloid Formation // Int J Mol Sci. – 2018. – Vol. 19, No.8. – Art. No. 2449. DOI:10.3390/ijms19082449.

23. Xu Y., Xiao G., Liu L., Lang M. Zinc transporters in Alzheimer’s disease // Mol Brain. – 2019. – Vol. 12. – Art. No. 106. DOI: 10.1186/s13041-019-0528-2.

24. Benoit S.L., Maier R.J. The nickel-chelator dimethylglyoxime inhibits human amyloid beta peptide in vitro aggregation // Sci Rep. – 2021. – Vol. 11, No.1. – Art. No. 6622. DOI: 10.1038/s41598-021-86060-1.

25. Lovell M.A., Robertson J.D., Teesdale W.J., Campbell J.L., Markesbery W.R. Copper, iron and zinc in Alzheimer’s disease senile plaques // J Neurol Sci. – 1998. – Vol. 158. – P. 47–52. DOI: 10.1016/s0022-510x(98)00092-6.

26. de la Arada I., Seiler C., Mäntele W. Amyloid fibril formation from human and bovine serum albumin followed by quasi-simultaneous Fourier-transform infrared (FT-IR) spectroscopy and static light scattering (SLS) // Eur Biophys J. – 2012. – Vol. 41, No.11. – P. 931–938. DOI: 10.1007/s00249-012-0845-1.

27. Holm N.K., Jespersen S.K., Thomassen L.V., Wolff T.Y., Sehgal P., Thomsen L.A., Christiansen G., Andersen C.B., Knudsen A.D., Otzen D.E. Aggregation and fibrillation of bovine serum albumin // Biochim Biophys Acta. – 2007. – Vol. 1774, No.9. – P. 1128–1138. DOI: 10.1016/j.bbapap.2007.06.008.

28. Ma X.J., Zhang Y.J., Zeng C.M. Inhibition of Amyloid Aggregation of Bovine Serum Albumin by Sodium Dodecyl Sulfate at Submicellar Concentrations // Biochemistry (Mosc). – 2018. – Vol. 83, No.1. – P. 60–68. DOI: 10.1134/S000629791801008X.

29. Литвинов Р.А., Косолапов В.А., Муравьева Е.А., Скачко И.В., Шамшина Д.Д. Модифицированный метод изучения реакции гликоксидации // Вестник Волгоградского государственного медицинского университета. – 2020. – Т. 2, № 74. – С. 61–66.

30. Литвинов Р.А., Усмиянова Л.Э., Клименко Д.Р., Гонтарева А.В. Парадоксальная активность аминогуанидина в модели гликоксидации в присутствии катионов Cu(II) // Вестник Волгоградского государственного медицинского университета. – 2020. – № 3 (75). – С. 159–165.

31. Ramirez Segovia A.S., Wrobel K., Acevedo Aguilar F.J., Corrales Escobosa A.R., Wrobel K. Effect of Cu(II) on in vitro glycation of human serum albumin by methylglyoxal: a LC-MS-based proteomic approach // Metallomics. – 2017. – 9(2). – P. 132–140. DOI: 10.1039/c6mt00235h.

32. Michalska-Mosiej M., Socha K., Soroczyńska J., Karpińska E., Łazarczyk B., Borawska M.H. Selenium, Zinc, Copper, and Total Antioxidant Status in the Serum of Patients with Chronic Tonsillitis // Biol Trace Elem Res. – 2016. – Vol. 173, No.1. – P. 30–34. DOI:10.1007/s12011-016-0634-2.

33. Shanmugam G., Polavarapu P.L. Vibrational circular dichroism spectra of protein films: thermal denaturation of bovine serum albumin // Biophys Chem. – 2004. – Vol. 111, No.1. – P. 73–77. DOI: 10.1016/j.bpc.2004.04.005.

34. Chebotareva N.A., Roman S.G., Borzova V.A., Eronina T.B., Mikhaylova V.V., Kurganov B.I. Chaperone-Like Activity of HSPB5: The Effects of Quaternary Structure Dynamics and Crowding. // Int J Mol Sci. – 2020. – Vol. 21, No.14. – Art. No.4940. DOI: 10.3390/ijms21144940.

35. Séro L., Sanguinet L., Blanchard P., Dang B.T., Morel S., Richomme P., Séraphin D., Derbré S. Tuning a 96-well microtiter plate fluorescence-based assay to identify AGE inhibitors in crude plant extracts // Molecules. – 2013. – Vol. 18, No.11. – P. 14320–14339. DOI: 10.3390/molecules181114320.

36. Beisswenger P.J., Howell S., Mackenzie T., Corstjens H., Muizzuddin N., Matsui M.S. Two fluorescent wavelengths, 440(ex)/520(em) nm and 370(ex)/440(em) nm, reflect advanced glycation and oxidation end products in human skin without diabetes // Diabetes Technol Ther. – 2012. – Vol. 14, No.3. – P. 285–292. DOI: 10.1089/dia.2011.0108.

37. Zhang Y., Baloglu F.K., Ziemer L.E.H., Liu Z., Lyu B., Arendt L.M., Georgakoudi I. Factors associated with obesity alter matrix remodeling in breast cancer tissues // J Biomed Opt. – 2020. – Vol. 25, No.1. – P. 1–14. DOI: 10.1117/1.JBO.25.1.014513.

38. Oto N., Oshita S., Makino Y., Kawagoe Y., Sugiyama J., Yoshimura M. Non-destructive evaluation of ATP content and plate count on pork meat surface by fluorescence spectroscopy // Meat Sci. – 2013. – Vol. 93, No.3. –

39. P. 579–585. DOI: 10.1016/j.meatsci.2012.11.010.

40. Yang H, Xiao X., Zhao X., Wu Y. Intrinsic fluorescence spectra of tryptophan, tyrosine and phenyloalanine // Selected Papers of the Chinese Society for Optical Engineering Conferences held October and November 2016. – International Society for Optics and Photonics, 2017. – Vol. 10255. –102554M. DOI: 10.1117/12.2268397.

41. Lakowicz J.R. Protein Fluorescence. Principles of Fluorescence Spectroscopy. Springer, Boston, MA. (2006). DOI: 10.1007/978-0-387-46312-4_16.

42. Bansode S., Bashtanova U., Li R., Clark J., Müller K.H., Puszkarska A., Goldberga I., Chetwood H.H., Reid D.G., Colwell L.J., Skepper J.N., Shanahan C.M., Schitter G., Mesquida P., Duer M.J. Glycation changes molecular organization and charge distribution in type I collagen fibrils // Sci Rep. – 2021. – Vol. 10. – Art. No. 3397. DOI: 10.1038/s41598-020-60250-9.

43. Hunt J.V., Wolff S.P. Oxidative glycation and free radical production: a causal mechanism of diabetic complications // Free Radic Res Commun. – 1991. – Vol. 12–13. – P. 115–123. DOI: 10.3109/10715769109145775.

44. Ejaz H.W., Wang W., Lang M. Copper Toxicity Links to Pathogenesis of Alzheimer’s Disease and Therapeutics Approaches // Int J Mol Sci. – 2020. – Vol. 21, No.20. – Art. No. 7660. DOI: 10.3390/ijms21207660.

45. Chetyrkin S.V., Mathis M.E., Ham A.J., Hachey D.L., Hudson B.G., Voziyan P.A. Propagation of protein glycation damage involves modification of tryptophan residues via reactive oxygen species: inhibition by pyridoxamine // Free Radic Biol Med. – 2008. – Vol. 44, No.7. – P. 1276–1285. DOI: 10.1016/j.freeradbiomed.2007.09.016.

46. Wang S.S., Chen Y.T., Chou S.W. Inhibition of amyloid fibril formation of beta-amyloid peptides via the amphiphilic surfactants // Biochim Biophys Acta. – 2005. – Vol. 1741, No.3. – P. 307–313. DOI: 10.1016/j.bbadis.2005.05.004.

47. Khurana R., Coleman C., Ionescu-Zanetti C., Carter S.A., Krishna V., Grover R.K., Roy R., Singh S. Mechanism of thioflavin T binding to amyloid fibrils // J Struct Biol. – 2005. – Vol. 151, No.3. – P. 229–238. DOI: 10.1016/j.jsb.2005.06.006.

48. Wu F.Y., Zhang L.N., Ji Z.J., Wan X.F. Spectroscopic investigation of the interaction between thiourea-zinc complex and serum albumin // Journal of Luminescence. – 2010. – Vol. 130. – P. 1280–1284.

49. Zhang M., Qiao J., Zhang S., Qi L. Copper nanoclusters as probes for turn-on fluorescence sensing of L-lysine // Talanta. – 2018. – Vol. 182. – P. 595–599. DOI: 10.1016/j.talanta.2018.02.035.

50. Tahmasebinia F., Emadi S. Effect of metal chelators on the aggregation of beta-amyloid peptides in the presence of copper and iron // Biometals. – 2017. – Vol. 30, No.2. – P. 285–293. DOI: 10.1007/s10534-017-0005-2.

51. Kheirouri S., Alizadeh M., Maleki V. Zinc against advanced glycation end products // Clin Exp Pharmacol Physiol. – 2018. – Vol. 45, No.6. – P. 491–498. DOI: 10.1111/1440-1681.12904.

52. Zhuang X., Pang X., Zhang W., Wu W., Zhao J., Yang H., Qu W. Effects of zinc and manganese on advanced glycation end products (AGEs) formation and AGEs-mediated endothelial cell dysfunction // Life Sci. – 2012. – Vol. 90, No.3–4. – P. 131–139. DOI: 10.1016/j.lfs.2011.10.025.

53. Iannuzzi C., Irace G., Sirangelo I. Differential effects of glycation on protein aggregation and amyloid formation // Front Mol Biosci. – 2014. – Vol. 1. – Art. No. 9. DOI: 10.3389/fmolb.2014.00009.

54. Banerjee S. Effect of glyoxal and 1-methylisatin on stress-induced fibrillation of Hen Egg White Lysozyme: Insight into the anti-amyloidogenic property of the compounds with possible therapeutic implications // International Journal of Biological Macromolecules. – 2020. – Vol. 165. – P. 1552–1561. DOI: 10.1016/j.ijbiomac.2020.10.017.

55. Persichilli C., Hill S.E., Mast J., Muschol M. Does Thioflavin-T Detect Oligomers Formed During Amyloid Fibril Assembly // Biophysical Journal. – 2011. – Vol. 100, No.3. (Suppl 1). – Art. No. 538A. DOI: 10.1016/j.bpj.2010.12.3140.

56. Hanczyc P., Fita P. Laser Emission of Thioflavin T Uncovers Protein Aggregation in Amyloid Nucleation Phase // ACS Photonics. – 2021. DOI: 10.1021/acsphotonics.1c00082.


Для цитирования:


Литвинов Р.А., Гонтарева А.В., Усмиянова Л.Э., Клименко Д.Р. ВЛИЯНИЕ НЕКОТОРЫХ D-МЕТАЛЛОВ НА ОБРАЗОВАНИЕ КОНЕЧНЫХ ПРОДУКТОВ ГЛИКИРОВАНИЯ, АГРЕГАЦИЮ И АМИЛОИДНУЮ ТРАНСФОРМАЦИЮ АЛЬБУМИНА В РЕАКЦИИ ГЛИКИРОВАНИЯ. Фармация и фармакология. 2021;9(4):306-317. https://doi.org/10.19163/2307-9266-2021-9-4-306-317

For citation:


Litvinov R.A., Gontareva A.V., Usmiyanova L.E., Klimenko D.R. INFLUENCE OF CERTAIN D-METALS ON FORMATION OF ADVANCED GLYCATION END PRODUCTS, AGGREGATION AND AMYLOID TRANSFORMATION OF ALBUMIN IN GLYCATION REACTION. Pharmacy & Pharmacology. 2021;9(4):306-317. https://doi.org/10.19163/2307-9266-2021-9-4-306-317

Просмотров: 154


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2307-9266 (Print)
ISSN 2413-2241 (Online)