Preview

Фармация и фармакология

Расширенный поиск

PLGA – ПЕРСПЕКТИВНЫЙ ПОЛИМЕР ДЛЯ ДОСТАВКИ ЛЕКАРСТВЕННЫХ СРЕДСТВ

https://doi.org/10.19163/2307-9266-2021-9-5-334-345

Полный текст:

Аннотация

Полимеры стали неотъемлемой частью новой системы доставки лекарственных средств. Одним из успешных биоразлагаемых полимеров является PLGA, который состоит из сложных полиэфиров молочной и гликолевой кислот. Это один из одобренных «U. S. Food and Drugs Administration» (FDA, США) биоразлагаемых полимеров, который в последнее время широко используется в терапевтических целях.

Цель. Познакомить химиков-исследователей с новыми свойствами и применением PLGA в области фармации.

Материалы и методы. В качестве источников информации использовались различные базы данных, такие как Science Direct, Scopus, Web of Science, PubMed и Google Scholar. Поиск проводился по следующим ключевым словам и словосочетаниям: PLGA, доставка новых лекарств, наночастицы PLGA, биомедицинское применение PLGA.

Результаты. Фармацевтическая и биомедицинская промышленность переполнены синтетическими и натуральными полимерами. Механические и вязкоэластичные свойства полимеров делают их пригодными для временной и пространственной доставки лекарственных препаратов в течение длительного периода. Применение методов сополимеризации приводит к модификации водорастворимости полимеров и делает их пригодными для различного использования системами доставки лекарственных веществ. Благодаря свойствам биосовместимости и биоразлагаемости полимеры стали использоваться в новых системах таргетной доставки лекарств. Сополимер молочной и гликолевой кислоты PLGA – представитель этих систем. PLGA универсален, так как может использоваться для инкапсуляции малых молекул, в тканевой инженерии, при восстановления костей и т. д., ввиду способности воспроизводить любой размер и принимать любую форму.

Заключение. Сенситивность и способность к биоразложению PLGA делают этот сополимер интеллектуальным полимером для адресной и непрерывной доставки лекарств, а также в различных видах биомедицинского использования.

Об авторах

Н. Сурья
Фармацевтический колледж Крюпаниди 560035, Индия, Карнатака, Бангалор, Oфф Сарджапур Роуд Кармеларам Гунджур Роуд Вартур Хобли, Чикка Белландур, 12/1
Индия

аспирант в области фармации, научный сотрудник фармацевтического колледжа 



С. Бхаттачарья
Фармацевтический колледж Крюпаниди 560035, Индия, Карнатака, Бангалор, Oфф Сарджапур Роуд Кармеларам Гунджур Роуд Вартур Хобли, Чикка Белландур, 12/1
Индия

магистр фармацевтики, доцент фармацевтического колледжа 



Список литературы

1. Rafiei P., Haddadi A. A robust systematic design: optimization and preparation of polymeric nanoparticles of PLGA for docetaxel intravenous delivery // Materials Science and Engineering: C. – 2019. – Vol. 104. – Art. No.109950. DOI: 10.1016/j.msec.2019.109950.

2. Astete C.E., Sabliov C.M. Synthesis and characterization of PLGA nanoparticles // J. Biomater. Sci. Polym. Ed. – 2006. – Vol. 17, No.3. – P. 247–289. DOI: 10.1163/156856206775997322.

3. Danhier F., Ansorena E., Silva J.M., Coco R., Le Breton A., Préat V. PLGA-based nanoparticles: An overview of biomedical applications // J. Control. Release. – 2012. – Vol. 161, No.2. – P. 505–522. DOI: 10.1016/j.jconrel.2012.01.043.

4. Perinelli D.R., Cespi M., Bonacucina G., Palmieri G.F. PEGylated polylactide (PLA) and poly (lactic-co-glycolic acid) (PLGA) copolymers for the design of drug delivery systems // J. Pharm. Investig. – 2019. – Vol. 49, No.4. – P. 443–458. DOI: 10.1007/s40005-019-00442-2.

5. Zhao J., Yang H., Li J., Wang Y., Wang X. Fabrication of pH-responsive PLGA (UCNPs/DOX) nanocapsules with upconversion luminescence for drug delivery // Sci. Rep. – 2017. – Vol. 7. – P. 1–11. DOI: 10.1038/s41598-017-16948-4.

6. Mitragotri S., Burke P.A., Langer R. formulation and delivery strategies // Nat. Publ. Gr. – 2014. – Vol. 13, No.9. – P. 655–672. DOI: 10.1038/nrd4363.

7. Xu Y., Kim C.S., Saylor D.M., Koo D. Polymer degradation and drug delivery in PLGA-based drug–polymer applications: A review of experiments and theories // J. Biomed. Mater. Res. – Part B Appl Biomater. – 2017. – Vol. 105, No.6. – P. 1692–1716. DOI: 10.1002/jbm.b.33648.

8. Patel B.K., Parikh R.H., Patel N. Targeted delivery of mannosylated-PLGA nanoparticles of antiretroviral drug to brain // Int. J. Nanomed. – 2018. – Vol. 13. – P. 97–100.

9. Jose S., Sowmya S., Cinu T.A., Aleykutty N.A., Thomas S., Souto E.B. Surface modified PLGA nanoparticles for brain targeting of Bacoside-A // Eur. J. Pharm. Sci. – 2014. – Vol. 63. – P. 29–35. DOI: 10.1016/j.ejps.2014.06.024.

10. Zhao W., Zhang C., Li B., Zhang X., Luo X., Zeng C., Li W., Gao M., Dong Y. Lipid Polymer Hybrid Nanomaterials for mRNA Delivery // Cell Mol. Bioeng. – 2018. – Vol. 11, No.5. – P. 397–406. DOI: 10.1007/s12195-018-0536-9.

11. Kapoor D.N., Bhatia A., Kaur R., Sharma R., Kaur G., Dhawan S. PLGA: A unique polymer for drug delivery // Ther Deliv. – 2015. – Vol. 6, No.1. – P. 41–58. DOI: 10.4155/tde.14.91.

12. Song R., Murphy M., Li C., Ting K., Soo C., Zheng Z. Current development of biodegradable polymeric materials for biomedical applications // Drug Des Devel Ther. – 2018. – Vol. 12. – P. 3117–3145. DOI: 10.2147/DDDT.S165440.

13. Gandhi K.J., Deshmane S.V., Biyani K.R. Polymers in pharmaceutical drug delivery system: A review // Int J Pharm Sci Rev Res. – 2012. – Vol. 14, No.2. – P. 57–66.

14. Wu C., Baldursdottir S., Yang M., Mu H. Lipid and PLGA hybrid microparticles as carriers for protein delivery // J Drug Deliv Sci Technol. – 2018. – Vol. 43. – P. 65–72. DOI: 10.1016/j.jddst.2017.09.006.

15. Righetti M.C., Gazzano M., Di Lorenzo M.L., Androsch R. Enthalpy of melting of α′- and α-crystals of poly(L-lactic acid) // Eur Polym J. – 2015. – Vol. 70. – P. 215–220. DOI: 10.1016/j.eurpolymj.2015.07.024.

16. Ansary R.H., Awang M.B., Rahman M.M. Biodegradable poly(D,L-lactic-co-glycolic acid)-based micro/nanoparticles for sustained release of protein drugs – A review // Trop J Pharm Res. – 2014. – Vol. 13, No.7. – P. 1179–1190. DOI: 10.4314/tjpr.v13i7.24.

17. Hirenkumar M., Steven S. Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier // Polymers (Basel). – 2012. – Vol. 3, No.3. – P. 1–19. DOI: 10.3390/polym3031377.Poly.

18. Hines D.J., Kaplan D.L. Poly(lactic-co-glycolic) acid-controlled-release systems: experimental and modeling insights // Crit Rev Ther Drug Carrier Syst. – 2013. – Vol. 30, No.3. – P. 257–276. DOI: 10.1615/critrevtherdrugcarriersyst.2013006475.

19. Gentile P., Chiono V., Carmagnola I., Hatton P.V. An overview of poly(lactic-co-glycolic) Acid (PLGA)-based biomaterials for bone tissue engineering // Int J Mol Sci. – 2014. – Vol. 15, No.3. – P. 3640–3659. DOI: 10.3390/ijms15033640.

20. Elmowafy E.M., Tiboni M., Soliman M.E. Biocompatibility, biodegradation and biomedical applications of poly(lactic acid)/poly(lactic-co-glycolic acid) micro and nanoparticles // J. Pharm. Investig. – 2019. – Vol. 49. – P. 347–380. DOI: 10.1007/s40005-019-00439-x.

21. Netti PA, Biondi M, Frigione M. Experimental Studies and Modeling of the Degradation Process of Poly(Lactic-co-Glycolic Acid) Microspheres for Sustained Protein Release // Polymers. – 2020. – Vol. 12. – Art. No.2042. DOI: 10.3390/polym12092042.

22. Haggag Y.A., Faheem A.M., Tambuwala M.M., Osman M.A., El-Gizawy S.A., O’Hagan B, et al. Effect of poly (ethylene glycol) content and formulation parameters on particulate properties and intraperitoneal delivery of insulin from PLGA nanoparticles prepared using the double-emulsion evaporation procedure // Pharm Dev Technol . – 2018. – Vol. 23, No.4. – P. 370–381. DOI: 10.1080/10837450.2017.1295066.

23. Chou S.F., Woodrow K.A. Relationships between mechanical properties and drug release from electrospun fibers of PCL and PLGA blends // J Mech Behav Biomed Mater. – 2017. – Vol. 6. – P. 724–733. DOI: 10.1016/j.jmbbm.2016.09.004.

24. Machatschek R., Schulz B., Lendlein A. The influence of pH on the molecular degradation mechanism of PLGA // MRS Adv. – 2018. – Vol. 3, No.63. – P. 3883–3889. DOI: 10.1557/adv.2018.602.

25. Teixeira S., Eblagon K.M., Miranda F.R., Pereira M.F., Figueiredo J.L. Towards Controlled Degradation of Poly(lactic) Acid in Technical Applications // C. – 2021. – Vol. 7, No.2. – Art. No.42. DOI: 10.3390/c7020042.

26. Ying L., Zhaowei C., Xiaoming L., Xili D., Meng G., Haoran Z., Jie Y., Lizhen W., Qiang C., Yubo F. The effect of mechanical loads on the degradation of aliphatic biodegradable polyesters // Regenerative Biomaterials. – 2017. – Vol. 4, No.3. – P. 179–190. DOI: 10.1093/rb/rbx009.

27. Rapier C.E., Shea K.J., Lee A.P. Investigating PLGA microparticle swelling behavior reveals an interplay of expansive intermolecular forces // Sci Rep. – 2021. – Vol. 11. – Art. No.14512. DOI: 10.1038/s41598-021-93785-6.

28. Siegel S.J., Kahn J.B., Metzger K., Winey K.I., Werner K., Dan N. Effect of drug type on the degradation rate of PLGA matrices // Eur J Pharm Biopharm. – 2006. – Vol. 64, No.3. – P. 287–293. DOI: 10.1016/j.ejpb.2006.06.009.

29. Grizzi I., Garreau H., Li S., Vert M. Hydrolytic degradation of devices based on poly(DL-lactic acid) size-dependence // Biomaterials. – 1995. – Vol. 16, No.4. – P. 305–311. DOI: 10.1016/0142-9612(95)93258-f.

30. Zhang Z., Wang X., Li B., Hou Y., Cai Z., Yang J., Li Y. Paclitaxel-loaded PLGA microspheres with a novel morphology to facilitate drug delivery and antitumor efficiency // RSC Adv. – 2018. – Vol. 8. – Art. No.3274. DOI: 10.1039/C7RA12683B.

31. Ho M.J., Jeong H.T., Im S.H., Kim H.T., Lee J.E., Park J.S., Cho H.R., Kim D.Y., Choi Y.W., Lee J. Design and in vivo pharmacokinetic evaluation of Triamcinolone Acetonide microcrystals-loaded PLGA microsphere for increased drug retention in knees after iIntra-articular injection // Pharmaceutics. – 2019. – Vol. 11. – Art. No.419. DOI: 0.3390/pharmaceutics11080419.

32. Abuzar S.M., Ahn, J.H., Park K.S., Park E., Baik S., Hwang S.J. Pharmacokinetic Profile and Anti-Adhesive Effect of Oxaliplatin-PLGA Microparticle-Loaded Hydrogels in Rats for Colorectal Cancer Treatment // Pharmaceutics. – 2019. – Vol. 11. – Art. No.392. DOI: 10.3390/pharmaceutics11080392.

33. Jusu S.M., Obayemi J.D., Salifu A.A., Nwazojie C.C., Uzonwanne V., Odusanya O.S., Soboyejo W.O. Drug-encapsulated blend of PLGA-PEG microspheres: in vitro and in vivo study of the effects of localized/targeted drug delivery on the treatment of triple-negative breast cancer // Sci Rep. – 2020. – Vol. 10, No.1. – Art. No.14188. DOI: 10.1038/s41598-020-71129-0.

34. Ryu W.M., Kim S.N., Min C.H., Bin Choy Y. Dry Tablet Formulation of PLGA Nanoparticles with a Preocular Applicator for Topical Drug Delivery to the Eye // Pharmaceutics. – 2019. – Vol. 11. – Art. No.651. DOI: 10.3390/pharmaceutics11120651.

35. Varga N., Turcsányi Á., Hornok V., Csapó E. Vitamin E-Loaded PLA- and PLGA-Based Core-Shell Nanoparticles: Synthesis, Structure Optimization and Controlled Drug Release // Pharmaceutics. – 2019. – Vol. 11. – Art. No.57. DOI: 0.3390/pharmaceutics11070357.

36. Jo A., Ringel-Scaia V.M., McDaniel D.K. Fabrication and characterization of PLGA nanoparticles encapsulating large CRISPR–Cas9 plasmid // J Nanobiotechnol. – 2020. – Vol. 18. – Art. No.16. DOI: 10.1186/s12951-019-0564-1.

37. Primavera R, Kevadiya BD, Swaminathan G, Wilson RJ, De Pascale A, Decuzzi P, Thakor AS. Emerging Nano- and Micro-Technologies Used in the Treatment of Type-1 Diabetes // Nanomaterials (Basel). – 2020. – Vol. 10, No.4. – Art. No.789. DOI: 10.3390/nano10040789.

38. Parveen S., Sahoo S.K. Long circulating chitosan / PEG blended PLGA nanoparticle for tumor drug delivery // Eur J Pharmacol. – 2011. – Vol. 670, No.2–3. – P. 372–383. DOI: 10.1016/j.ejphar.2011.09.023.

39. Riley M.K., Vermerris W. Recent advances in nanomaterials for gene delivery—A review // Nanomaterials. – 2017. – Vol. 7, No.5. – P. 1–19. DOI: 10.3390/nano7050094.

40. Matteucci F., Giannantonio R., Calabi F., Agostiano A., Gigli G., Rossi M. Deployment and exploitation of nanotechnology nanomaterials and nanomedicine // AIP Conf Proc. – 2018. – Vol. 1990. – Art. No.020001. DOI: 10.1063/1.5047755.

41. Tahara K., Yamamoto H., Takeuchi H., Kawashima Y. Development of gene delivery system using PLGA nanospheres // Yakugaku Zasshi. – 2007. – Vol. 127, No.10. – P.1541–1548. DOI: 10.1248/yakushi.127.1541.

42. Figueiredo M., Esenaliev R. PLGA Nanoparticles for Ultrasound-Mediated Gene Delivery to Solid Tumors // J Drug Deliv. – 2012. – Vol. 2012. – P. 1–20. DOI: 10.1155/2012/767839.

43. Figueiredo M., Esenaliev R. PLGA Nanoparticles for Ultrasound-Mediated Gene Delivery to Solid Tumors // J Drug Deliv. – 2012. – Vol. 2012. – Art. No.767839. DOI: 10.1155/2012/767839.

44. Juliano R.L. The delivery of therapeutic oligonucleotides // Nucleic Acids Res. – 2016. – Vol. 4, No.14. – P. 6518–6548. DOI: 10.1093/nar/gkw236.

45. Vij N., Min T., Marasigan R., Belcher C.N., Mazur S., Ding H., et al. Development of PEGylated PLGA nanoparticle for controlled and sustained drug delivery in cystic fibrosis // J Nanobiotechnology. – 2010. – Vol. 8. – P. 1–18. DOI: 10.1186/1477-3155-8-22.

46. Pillai R.R., Somayaji S.N., Rabinovich M., Hudson M.C., Gonsalves K.E. Nafcillin-loaded PLGA nanoparticles for treatment of osteomyelitis // Biomed Mater. – 2008. – Vol. 3, No.3. – Art. No.034114. DOI: 10.1088/1748-6041/3/3/034114.

47. Kumar R., Sahoo G.C., Pandey K., Das V., Das P. Study the effects of PLGA-PEG encapsulated Amphotericin B nanoparticle drug delivery system against Leishmania donovani // Drug Deliv. – 2015. – Vol. 22, No.3. – P. 383–388. DOI: 10.3109/10717544.2014.891271.

48. Pasut G. Grand Challenges in Nano-Based Drug Delivery // Front Med Technol. – 2019. – Vol. 1. – P. 10–13. DOI: 10.3389/fmedt.2019.00001.

49. Sah E., Sah H. Recent trends in preparation of poly(lactide-co-glycolide) nanoparticles by mixing polymeric organic solution with antisolvent // J Nanomater. – 2015. – Vol. 2015. DOI: 10.1155/2015/794601.

50. Varde N.K., Pack D.W. Microspheres for controlled release drug delivery // Expert Opin Biol Ther. – 2004. – Vol. 4, No.1. – P. 35–51. DOI: 10.1517/14712598.4.1.35.

51. Feng T.S., Tian H.Y., Xu C.N., Lin L., Lam M.H.W., Liang H.J. Doxorubicin-loaded PLGA microparticles with internal pores for long-acting release in pulmonary tumor inhalation treatment // Chinese J Polym Sci. -2015. – Vol. 33, No.7. – P. 947–954. DOI: 10.1007/s10118-015-1642-y.

52. Ozeki T., Kaneko D., Hashizawa K., Imai Y., Tagami T., Okada H. Improvement of survival in C6 rat glioma model by a sustained drug release from localized PLGA microspheres in a thermoreversible hydrogel // Int J Pharm. – 2012. – Vol. 427, No.2. – P. 299–304. DOI: 10.1016/j.ijpharm.2012.02.012.

53. Kamaly N., Yameen B., Wu J., Farokhzad O.C. Degradable controlled-release polymers and polymeric nanoparticles: Mechanisms of controlling drug release // Chem Rev. – 2016. – Vol. 116, No.4. – P. 2602–2663. DOI: 10.1021/acs.chemrev.5b00346.

54. Lagreca E., Onesto V., Di Natale C., La Manna S., Netti P.A., Vecchione R. Recent advances in the formulation of PLGA microparticles for controlled drug delivery // Prog Biomater. – 2020. – Vol. 9, No.4. – P. 153–174. DOI: 10.1007/s40204-020-00139-y.

55. Han F.Y., Thurecht K.J., Whittaker A.K., Smith M.T. Bioerodable PLGA-based microparticles for producing sustained-release drug formulations and strategies for improving drug loading // Front Pharmacol. – 2016. – Vol. 7. – P. 1–11. DOI: 10.3389/fphar.2016.00185.

56. Lanao R.P.F., Jonker A.M., Wolke J.G.C., Jansen J.A., Van Hest J.C.M., Leeuwenburgh S.C.G. Physicochemical properties and applications of poly(lactic-co-glycolic acid) for use in bone regeneration // Tissue Eng – Part B Rev. – 2013. – Vol. 19, No.4. – P. 380–390. DOI: 10.1089/ten.teb.2012.0443.

57. Bansal H., Preet kaur S, Gupta AK. Microsphere: Methods of preparation and applications; A comparative study // Int J Pharm Sci Rev Res. – 2011. – Vol. 10, No.1. – P. 69–78.

58. Vasita R., Shanmugam K., Katti D.S. Degradation behavior of electrospun microfibers of blends of polymer // Polym Degrad Stab. – 2010. – Vol. 95, No.9. – P. 1605–1613. DOI: 10.1016/j.polymdegradstab.2010.05.032.

59. Baig M.H., Ahmad K., Saeed M., Alharbi A.M., Barreto G.E., Ashraf G.M., et al. Peptide based therapeutics and their use for the treatment of neurodegenerative and other diseases // Biomed Pharmacother. – 2018. – Vol. 103. – P. 574–581. DOI: 10.1016/j.biopha.2018.04.025.

60. Koerner J., Horvath D., Groettrup M. Harnessing Dendritic Cells for Poly (D,L-lactide-co-glycolide) Microspheres (PLGA MS)-Mediated Anti-tumor Therapy // Front Immunol. – 2019. – Vol. 10. – P. 1–16. DOI: 10.3389/fimmu.2019.00707.

61. Allahyari M., Mohit E. Peptide/protein vaccine delivery system based on PLGA particles // Hum Vaccines Immunother. – 2016. – Vol. 12, No.3. – P. 806–828. DOI: 10.1080/21645515.2015.1102804.

62. Jiang T., Singh B., Li H., Kim Y., Kang S., Nah J., et al. Biomaterials Targeted oral delivery of BmpB vaccine using porous PLGA microparticles coated with M cell homing peptide-coupled chitosan // Biomaterials. – 2014. – Vol. 35, No.7. – P. 2365–2373. DOI: 10.1016/j.biomaterials.2013.11.073.

63. Kholgh Eshkalak S., Rezvani Ghomi E., Dai Y., Choudhury D., Ramakrishna S. The role of three-dimensional printing in healthcare and medicine // Mater Des. – 2020. – Vol. 194. – Art. No.108940. DOI: 10.1016/j.matdes.2020.108940.

64. Wang W. Advanced protein formulations // Protein Sci. – 2015. – Vol. 24, No.7. – P. 1031–1039. DOI: 10.1002/pro.2684.

65. Sánchez A., Mejía S.P., Orozco J. Recent advances in polymeric nanoparticle-encapsulated drugs against intracellular infections. // Molecules. – 2020. – Vol. 25, No.16. – P. 1–45. DOI: 10.3390/molecules25163760.

66. Jensen D.M.K., Cun D., Maltesen M.J., Frokjaer S., Nielsen H.M., Foged C. Spray drying of siRNA-containing PLGA nanoparticles intended for inhalation // J Control Release. – 2010. – Vol. 142, No.1. – P. 138–145. DOI: 10.1016/j.jconrel.2009.10.010.

67. Bachu R.D., Chowdhury P., Al-Saedi Z.H.F., Karla P.K., Boddu S.H.S. Ocular drug delivery barriers—role of nanocarriers in the treatment of anterior segment ocular diseases // Pharmaceutics. – 2018. – Vol. 10, No.1. – P. 28. DOI: 10.3390/pharmaceutics10010028.

68. Tsai C.H., Wang P.Y., Lin I.C., Huang H., Liu G.S., Tseng C.L. Ocular drug delivery: Role of degradable polymeric nanocarriers for ophthalmic application // Int J Mol Sci. – 2018. – Vol. 19, No.9. – Art. No.2830. DOI: 10.3390/ijms19092830.

69. Chang E., McClellan A.J., Farley W.J., Li D.Q., Pflugfelder S.C., De Paiva C.S. Biodegradable PLGA-Based Drug Delivery Systems for Modulating Ocular Surface Disease under Experimental Murine Dry Eye // J Clin Exp Ophthalmol. – 2011. – Vol. 2, No.11. – Art. No.191. DOI: 10.4172/2155-9570.1000191.

70. Gupta H., Aqil M., Khar R.K., Ali A., Bhatnagar A., Mittal G. Sparfloxacin-loaded PLGA nanoparticles for sustained ocular drug delivery // Nanomedicine Nanotechnology, Biol Med. – 2010. – Vol. 6, No.2. – P. 324–333. DOI: 10.1016/j.nano.2009.10.004.

71. Jiménez M., Romero L., Domínguez I.A., Espinosa M.D.M., Domínguez M. Additive Manufacturing Technologies: An Overview about 3D Printing Methods and Future Prospects // Complexity. – 2019. – Vol. 2019. DOI: 10.1155/2019/9656938.

72. Peng Q., Tang Z., Liu O., Peng Z. Rapid prototyping-assisted maxillofacial reconstruction // Ann Med. – 2015. – Vol. 47, No.3. – P. 186–208. DOI: 10.3109/07853890.2015.1007520.

73. Azad M.A., Olawuni D., Kimbell G., Badruddoza A.Z.M., Hossain M.S., Sultana T. Polymers for extrusion-based 3D printing of pharmaceuticals: A holistic materials-process perspective // Pharmaceutics. – 2020. – Vol. 12, No.2. – P. 1–34. DOI: 10.3390/pharmaceutics12020124.

74. Beg S., Almalki W.H., Malik A., Farhan M., Aatif M., Rahman Z., et al. 3D printing for drug delivery and biomedical applications // Drug Discov Today. – 2020. – Vol. 25, No.9. – P. 1668–1681. DOI: 10.1016/j.drudis.2020.07.007.

75. Mathew E., Pitzanti G., Larrañeta E., Lamprou D.A. Three-dimensional printing of pharmaceuticals and drug delivery devices // Pharmaceutics. – 2020. – Vol. 12, No.3. – P. 1–9. DOI: 10.3390/pharmaceutics12030266.

76. Naseri E., Butler H., MacNevin W., Ahmed M., Ahmadi A. Low-temperature solvent-based 3D printing of PLGA: a parametric printability study // Drug Dev Ind Pharm. – 2020. – Vol. 46, No.2. – P. 173–178. DOI: 10.1080/03639045.2019.1711389.

77. Shim J.H., Won J.Y., Sung S.J., Lim D.H., Yun W.S., Jeon Y.C., et al. Comparative efficacies of a 3D-printed PCL/PLGA/β-TCP membrane and a titanium membrane for guided bone regeneration in beagle dog // Polymers (Basel). – 2015. – Vol. 7, No.1. – P. 2061–2077.

78. Gwak S.J., Yun Y., Yoon D.H., Kim K.N., Ha Y. Therapeutic use of 3β-[N-(N’,N’-dimethylaminoethane) carbamoyl] cholesterol-modified PLGA nanospheres as gene delivery vehicles for spinal cord injury // PLoS One. – 2016. – Vol. 11, No.1. – P. 1–14. DOI: 10.1371/journal.pone.0147389.

79. Lai P., Hong D., Lin C.T., Chen L., Chen W., Chu I. Composites : Part B Effect of mixing ceramics with a thermosensitive biodegradable hydrogel as composite graft // Compos Part B. – 2012. – Vol. 43, No.8. – P. 3088–3095.

80. Lanao R.P.F., Leeuwenburgh S.C.G., Wolke J.G.C., Jansen J.A. In vitro degradation rate of apatitic calcium phosphate cement with incorporated PLGA microspheres // Acta Biomater. – 2011. – Vol. 7. – P. 3459–3468. DOI: 10.1016/j.actbio.2011.05.036.

81. Nafea E.H., El-massik M.A., El-khordagui L.K., Marei M.K., Khalafallah N.M. Alendronate PLGA microspheres with high loading efficiency for dental applications // J Microencapsul. – 2007. – Vol. 24. – P. 525–538. DOI: 10.1080/02652040701439807.

82. Tsujimoto H., Hara K., Tsukada Y., Huang C.C., Kawashima Y., Arakaki M., et al. Evaluation of the permeability of hair growing ingredient encapsulated PLGA nanospheres to hair follicles and their hair growing effects // Bioorg Med Chem Lett. – 2007. – Vol. 17. – P. 4771–4777. DOI: 10.1016/j.bmcl.2007.06.057.

83. Iverson N., Plourde N., Chnari E., Nackman G.B., Moghe P.V. Convergence of nanotechnology and cardiovascular medicine progress and emerging prospects. Biodrugs. - 2008. – Vol.22, No.1. – P. 1–10. DOI: 10.2165/00063030-200822010-00001.

84. Yokoyama R., Massaki L., Tabata Y., Hoshiga M., Ishizaka N., Ashai M. Cardiac Regeneration by statin-polymer nanoparticle-loaded adipose-derived stem cell therapy in myocardial infarction // Stem Cells Transl Med. – 2019. – Vol.8. – P. 1055–1067. DOI: 10.1002/sctm.18-0244.

85. Sadat Tabatabaei Mirakabad F., Nejati-Koshki K., Akbarzadeh A., Yamchi M.R., Milani M., Zarghami N., Zeighamian V., Rahimzadeh A., Alimohammadi S., Hanifehpour Y., Joo S.W. PLGA-based nanoparticles as cancer drug delivery systems // Asian Pac J Cancer Prev. – 2014. – Vol. 15, No.2. – P. 517–535. DOI: 10.7314/apjcp.2014.15.2.517.

86. Lamprecht A., Schäfer U., Lehr C.M. Size-dependent bioadhesion of micro- and nanoparticulate carriers to the inflamed colonic mucosa // Pharm Res. – 2001. – Vol. 18, No.6. – P. 788–793. DOI: 10.1023/a:1011032328064.

87. Renzulli J.F., Tagawa S.T., Atkinson S.N., Boldt-Houle D.M., Moul J.W. Subcutaneous in situ gel delivered leuprolide acetate’s consistent and prolonged drug delivery maintains effective testosterone suppression independent of age and weight in men with prostate cancer // BJUI Compass. – 2020. – Vol. 1, No.2. – P. 64–73. DOI: 10.1002/bco2.13.


Для цитирования:


Сурья Н., Бхаттачарья С. PLGA – ПЕРСПЕКТИВНЫЙ ПОЛИМЕР ДЛЯ ДОСТАВКИ ЛЕКАРСТВЕННЫХ СРЕДСТВ. Фармация и фармакология. 2021;9(5):334-345. https://doi.org/10.19163/2307-9266-2021-9-5-334-345

For citation:


Surya N., Bhattacharyya S. PLGA – THE SMART POLYMER FOR DRUG DELIVERY. Pharmacy & Pharmacology. 2021;9(5):334-345. https://doi.org/10.19163/2307-9266-2021-9-5-334-345

Просмотров: 216


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2307-9266 (Print)
ISSN 2413-2241 (Online)