1. Kumar N, Bentolila A, Domb AJ. Structure and biological activity of heparinoid. Mini Reviews in Medicinal Chemistry. 2005; 5 (5): 441-7. https://doi.org/10.2174/1389557053765538.
2. Borai IH, Ezz MK, Rizk MZ, El-Sherbiny M, Matloub AA, Aly HF, Farrag AR, Fouad GI. Hypolipidemic and anti-atherogenic effect of sulphated polysaccharides from the green alga Ulva fasciata. Int J Pharm Sci Rev Res. 2015; 31 (1): 1-12.
3. Park J, Yeom M, Hahm D-H. Fucoidan improves serum lipid levels and atherosclerosis through hepatic SREBP-2-mediated regulation. J Pharmacol Sci. 2016; 131 (2): 84-92. https://doi.org/10.1016/j.jphs.2016. 03.007.
4. Rizk MZ. The anti-hypercholesterolemic effect of ulvan polysaccharide extracted from the green alga Ulva fasciata on aged hypercholesterolemic rats. Asian J Pharm Clin Res. 2016; 9 (3): 165-76.
5. Yokota T, Nomura K, Nagashima M, Kamimura N. Fucoidan alleviates high-fat diet-induced dyslipidemia and atherosclerosis in ApoE(shl) mice deficient in apolipoprotein E expression. J Nutr Biochem. 2016; 32: 46-54. https://doi.org/10.1016/j.jnutbio.2016.01.011.
6. Deniaud-Bouët E, Hardouin K, Potin P, Kloareg B, Hervé C. A review about brown algal cell walls and fucose-containing sulfated polysaccharides: cell wall context, biomedical properties and key research challenges. Carbohydr Polym. 2017; 175: 395-408. https://doi.org/10.1016/j.carbpol.2017.07.082.
7. Li W, Wang K, Jiang N, Liu X, Wan M, Chang X, Liu D, Qi H, Liu Sh. Antioxidant and antihyperlipidemic activities of purified polysaccharides from Ulva pertusa. J Appl Phycol. 2018; 30: 2619-27. https://doi.org/10.1007/s10811-018-1475-5.
8. Yulis K, Hakim B, Rosidah R. Effect of sodium alginate on prevention of hypercholesterolemia and atherosclerosis in rats. Asian J Pharm Clin Res. 2018; 11 (6): 242-7. https://doi.org/10.22159/ajpcr.2018.v11i6.24768.
9. Barkagan ZS, Momot AP. Osnovy diagnostiki narushenii gemostaza. [Foundations of diagnostics of homeostasis disturbance]. Moscow: Nyudiamed AO. 2000: 42-56. Russian
10. Masola V, Zaza G, Onisto M, Lupo A, Gambaro G. Glycosaminoglycans, proteoglycans and sulodexide and the endothelium: biological roles and pharmacological effects. Int Angiol. 2014; 33 (3): 243-54.
11. Xin M, Ren L, Sun Ya, Li H-h. Guan H.-Sh, He X-X, Li Ch-X. Anticoagulant and antithrombotic activities of low-molecular-weight propylene glycol alginate sodium sulfate (PSS). Eur J Med Chem. 2016; 114: 33-40. https://doi.org/10.1016/j.ejmech.2016.02.063.
12. Patil NP, Le V, Sligar AD, Mei L, Chavarria D. Yang EY, Baker AB. Algal polysaccharides as therapeutic agents for atherosclerosis. Front Cardiovasc Med. 2018; 5: 1-18. https://doi.org/10.3389/fcvm.2018.00153.
13. Braga WF, Aguilar EC, Alvarez-Leite JaI. Fucoidans as a potential nutraceutical in combating atherosclerotic cardiovascular diseases. Biomed J Sci & Tech Res. 2019; 21 (Issue 3): 15953-8. https://doi.org/10.26717/BJSTR.2019.21.003616.
14. Coccheri S, Mannello F. Development and use of sulodexide in vascular diseases: implications for treatment. Drug Des Devel Ther. 2014; 8: 49-65. https://doi.org/10.2147/DDDT.S6762.
15. Hoppensteadt DA, Fareed J. Pharmacological profile of sulodexide. Int Angiol. 2014; 33 (Issue 3): 229-35.
16. Condorelli M, Chiariello M, Dagianti A, Penco M, Dalla Volta S, Pengo V, Schivazappa L, Mattioli G, Mattioli AV, Brusoni B, Trotta E, Bingamini A. IPO-V2: A prospective, multicenter, randomized, comparative clinical investigation of the effects of sulodexide in preventing cardiovascular accidents in the first year after acute myocardial infarction. J Am Coll Cardiol. 1994; 23 (Issue 1): 27-34. https://doi.org/10.1016/0735-1097(94)90498-7.
17. Coccheri S, Scondotto G, Agnelli G, Palazzini E, Zamboni V. Sulodexide in the treatment of intermittent claudication. Results of a randomized, double-blind, multicentre, placebo-controlled study. Eur Heart J. 2002; 23 (13): 1057-65. https://doi.org/10.1053/euhj.2001.3033.
18. Chupin AV, Katorkin SE, Katelnitsky II, Katelnitskaya OV, Prostov II, Petrikov AS, Koshevoi AP, Lyudkova LF. Sulodexide in the treatment of chronic venous insufficiency: results of the All-Russian multicenter ACVEDUCT program. Adv Ther. 2020; 37 (Issue 5): 2071-82. https://doi.org/10.1007/s12325-020-01270-9.
19. Kostyro YaA, Kovalskaya GN, Silizertseva OA, Ilyina OP. Eksperimental’naya farmakokinetika sul’fatirovannogo arabinogalaktana pri razlichnyh putyah vvedeniya. [Experimental pharmacokinetics of sulfated arabinogalactan for various routes of administration]. Farmaciya. = Pharmacy. 2008; 1: 45-6. Russian
20. Kostyro YaA, Stankevich VK, Trofimov BA, inventors; Federal’noe gosudarstvennoe bjudzhetnoe uchrezhdenie nauki Irkutskij institut khimii im. A.E. Favorskogo Sibirskogo otdelenija Rossijskoj akademii nauk [Federal State Budget Institution for Science “A.E. Favorsky Irkutsk Institute of Chemistry Siberian Branch of the Russian Academy of Sciences”], assignee. Sposob polucheniya sul’fatirovannyh proizvodnyh arabinogalaktana, obladayushchih antikoagulyantnoj i gipolipidemicheskoj aktivnost’yu [Method of obtaining sulfated derivatives of arabinogalactan with anticoagulant and hypolipidemic activity]. Russian Federation patent RU 2532915. 2014 Nov 20. Russian
21. Kostyro YaA, Stankevich VK. New approach to the synthesis of an active substance of Agsular® pharmaceutical for the prevention and treatment of atherosclerosis. Russ Chem Bull. (Int Ed) 2015; 64 (Issue 7): 1576-80. https://doi.org/10.1007/s11172-015-1044-x.
22. Kostyro YaA, Kolbasov SE. Issledovanie bezopasnosti substancii Agsular®. [Investigation of the safety of the Agsular® substance]. Eksperimental’naya i klinicheskaya farmakologiya. = Experimental and clinical pharmacology. 2017; 80 (S6): 17. (in Russian)
23. Kostyro YaA, Kostyro VV. Issledovanie farmakologicheskoj aktivnosti substancii Agsular®. [Study of the pharmacological activity of the Agsular® substance]. Eksperimental’naya i klinicheskaya farmakologiya. [Experimental and clinical pharmacology]. 2018; 81 (S): 124. https://doi.org/10.30906/0869-2092-2018-81-5s-1-306. Russian
24. Menshutina NV, Mishina YuV, Alves SV. Innovacionnye tekhnologii i oborudovanie farmacevticheskogo proizvodstva. [Innovative technologies and equipment for pharmaceutical production]. Moscow: BINOM; 2012: 328. Russian
25. Alqahtani MS, Kazi M, Alsenaidy MA, Ahmad MZ. Advances in Oral Drug Delivery. Front Pharmacol. 2021; 12: 1-21. https://doi.org/10.3389/fphar.2021.618411.
26. Walter MB, Tyutenkov OL, Philippin NA. Postadijnyj kontrol’ v proizvodstve tabletok. [Step-by-step control in the production of tablets]. Moscow: Medicine. 1982: 208. Russian
27. Hausner HH. Friction conditions in a mass of metal powder. Int J Powder Metall. 1967; 3: 7-13.
28. Carr RL. Evaluating flow properties of solids. Chem Eng. 1965; 72: 163-8.
29. Iqubal MK, Singh PK, Shuaib M, Iqubal A, Singh M. Recent advances in direct compression technique for pharmaceutical tablet formulation. Int J Pharm Res & Devel. 2014; 6 (Issue 1): 49-57.
30. Basov NI, Lyubartovich VA, Lyubartovich SA. Kontrol’ kachestva polimernyh materialov. [Quality control of polymer materials]. Leningrad: Chemistry. 1990: 112. Russian
31. Makhkamov SM. Osnovy tabletochnogo proizvodstva. [Basics of tablet production]. Tashkent: FAN. 2004: 148. Russian
32. Cain J. An alternative technique for determining ANSI/CEMA standard 550 flowability ratings for granular materials. Powder Hand Proc. 2002; 14 (Issue 3): 218-20.
33. Ogata K. A review: recent progress on evaluation of flowability and floodability of powder. KONA Powder and Particle Journal. 2019; 36: 33-49. https://doi.org/10.14356/kona.2019002.
34. Kostyro YaA, Kovalskaya GN, Sukhoterina NV, Turetskova VF. Tabletirovannaya lekarstvennaya forma preparata AGSK. [Tablet dosage form of AGSK]. In: Chuchalin AG, Belousov YuB, editors. Chelovek i lekarstvo. [Man and Medicine]. XV Russian National Congress; 2008 Apr 14-18; Moscow, Russian Federation. Moscow: RITS CJSC “Man and Medicine”. 2008: 643 p. Russian
35. Schmidt PC, Rubensdörfer CJW. Evaluation of Ludipress as a “Multipurpose Excipeent” for direct compression: Part I: Powder characteristics and tableting properties. Drug Development and Industrial Pharmacy. 1994; 20 (Issue 18): 2899-25. https://doi.org/10.3109/03639049409042687.
36. Sridevi G, Korangi V, Latha SM. Review on a novel approach in recent advances of granulation techniques and technologies. Research J Pharm And Tech. 2017; 10 (Issue 2): 607-17. https://doi.org/10.5958/0974-360X.2017.00119.6.
37. Patil LP, Rawal VP. Review article on granulation process with novel technology: an overview. Indian Journal of Applied Research. 2017; 7 (Issue 6): 90-3. https://doi.org/10.36106/ijar.
38. Aulton ME. Pharmaceutics: The Science of Dosage Form Design. Edinburgh: Churchill Livingstone. 2004: 679 p.
39. Mogilyuk V. Funkcional’nye plenochnye pokrytiya i prakticheskie aspekty ih primeneniya. [Functional film coatings and practical aspects of their application]. Farmacevticheskaya otrasl’ = Pharmaceutical industry. 2016; 1: 52-65.
40. Wasilewska K, Winnicka K. Ethylcellulose - a pharmaceutical excipient with multidirectional application in drug dosage forms development. Materials. 2019;12: 1-21. https://doi.org/10.3390/ma12203386.
41. Sepulveda E, Kildsig DO, Ghaly ES. Relationship between internal phase volume and emulsion stability: the cetyl alcohol / stearyl alcohol system. Pharm Devel Tech. 2003; 8 (Issue 3): 263-75. https://doi.org/10.1081/PDT-120022155.
42. Porter SC. Preventing film coating problems through design. Pharmaceutical Technology. 2016; 28 (Issue 2): 43-6.
43. Himaja V, Sai KO, Karthikeyan R, Srinivasa BP. A comprehensive review on tablet coating. Austin Pharmacol Pharm. 2016; 1 (Issue 1): 1-8.
44. Elder D. Design, formulation and manufacture of film-coated drug products. Eur Pharm Rev. 2017; 22 (Issue 5): 37-40.
45. Zaid AN. A comprehensive review on pharmaceutical film coating: past, present, and future. Drug Design, Development and Therapy. 2020; 14: 4613-23. https://doi.org/10.2147/DDDT.S277439.
46. Amelian A, Winnicka K. Polymers in pharmaceutical taste masking applications. Polimery. 2017; 62 (6): 419-27. https://doi.org/10.14314/polimery.2017.419.