Preview

Pharmacy & Pharmacology

Advanced search

Modern Approaches to Enterovirus-Based Oncolytic Immune Virotherapy of Malignant Diseases

https://doi.org/10.19163/2307-9266-2025-13-2-111-127

Abstract

The aim. The review presents the analysis of publications on modern approaches to oncolytic viral immunotherapy of malignant diseases which is predominantly based on usage of enteroviruses.

Materials and methods. Electronic data bases — PubMed, Scopus, Web of Science, Google Scholar, eLibrary, and other accessible datasets were used for gathering and analyzing appropriate publications for the following keywords: oncolytic virotherapy, oncolytic viruses, enteroviruses, poliovirus, coxsackievirus, echovirus, preclinical and clinical trials. The research included the time interval from 1990 till 2024.

Results. The data present the properties of wild type and gen modified viruses — the supposed basis for development of the drugs, as well as their action mechanisms. The described mechanisms include direct cytolysis caused by the intracellular reproduction of the virus, activation of antitumor immunity of the host body (viral recipient) due to presentation of the tumor-associated antigens from the damaged cells to dendritic cells for their further maturation, presentation of these antigens to T-lymphocytes and activation of cytotoxic lymphocytes, modulation of tumor microenvironment due to immunostimulation,  and transition of “cold” tumor and its environment into “hot” state. It has been noticed that the most pronounced therapeutic efficacy is observed in immunosensitive tumors. This observation correlates with the action mechanism of the oncolytic viruses.  Clinical trials of viral drugs still have not led to superior results in therapeutic efficacy but they have demonstrated the synergistic efficacy with other methods of conservative therapy. According to the results of preclinical and clinical trials, enteroviruses demonstrate a favorable toxic profile. Factors which reduce the efficacy of virotherapy were evaluated. They include non-targeted and non-specific absorption of viruses by tumor cells, weak endocytosis and reproduction followed by distribution in the body, preexisting immunity against the concrete viruses and induction of antiviral antibody expression during viral therapy, and lack of sensitivity of the tumor and its microenvironment to the virus.

Conclusion. Enterovirus-based oncolytic therapy is a promising therapeutic option but its efficacy needs to be enhanced using mechanisms of its therapeutic impact.

About the Authors

E. R. Nemtsova
Moscow Hertsen Research Institute of Oncology – branch of the National Medical Research Radiology Center.
Russian Federation

Doctor of Sciences (Biology), Leading Researcher of the Moscow Hertsen Research Insitute of Oncology — branch of the National Medical Research Radiology Center.

3, 2nd Botkinskiy Psge, Moscow, Russia, 125284.



E. A. Plotnikova
Moscow Hertsen Research Institute of Oncology – branch of the National Medical Research Radiology Center.
Russian Federation

Candidate of Sciences (Biology), Senior Researcher of the Moscow Hertsen Research Insitute of Oncology – branch of the National Medical Research Radiology Center. 

3, 2nd Botkinskiy Psge, Moscow, Russia, 125284.



References

1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71(3):209–49. DOI: 10.3322/caac.21660

2. The state of cancer care for the population of Russia in 2022. Ed. A.D. Kaprin, V.V. Starinskiy, A.O. Shakhzadova. M.: Moscow Hertsen Research Insitute of Oncology – branch of the National Medical Research Radiology Center of the Ministry of Health of Russia; 2023. 239 p. ISBN 978-5-85502-283-4.

3. Yi M, Li T, Niu M, Mei Q, Zhao B, Chu Q, Dai Z, Wu K. Exploiting innate immunity for cancer immunotherapy. Molecular Cancer. 2023;22(1):187–242. DOI: 10.1186/s12943-023-01885-w

4. Chen DS, Mellman I. Oncology Meets Immunology: The Cancer–Immunity Cycle. Immunity. 2013;39(1):1–10. DOI: 10.1016/j.immuni.2013.07.012

5. Wang W, Liu S, Dai P, Yang N, Wang Y, Giese RA, Merghoub T, Wolchok J, Deng L. Elucidating mechanisms of antitumor immunity mediated by live oncolytic vaccinia and heat–inactivated vaccinia. J Immuno Ther Cancer. 2021;9(9):e002569. DOI: 10.1136/jitc-2021-002569

6. Kamil F, Rowe JH. How does the tumor microenvironment play a role in hepatobiliary tumors. J Gastrointest Oncol. 2018;9(1):180–95. DOI: 10.21037/jgo.201706.09

7. Ylä-Pelto J, Tripathi L, Susi P.Therapeutic use of native and recombinant enteroviruses. Viruses. 2016;8(3):57–72. DOI: 10.3390/v8030057

8. Bejarano L, Jordão MJC, Joyce JA. Therapeutic targeting of the tumor microenvironment. Cancer Discov. 2021;11(4):933–59. DOI: 10.1158/2159-8290.CD-20-1808

9. Wang L, Chard Dunmall LS, Cheng Z, Wang Y. Remodeling the tumor microenvironment by oncolytic viruses: beyond oncolysis of tumor cells for cancer treatment. J Immunother Cancer. 2022;10(5):e004167. DOI: 10.1136/jitc-2021-004167

10. Volovat SR, Scripcariu DV, Vasilache IA, Stolniceanu CR, Volovat C, Augustin IG, Volovat CC, Ostafe MR, Andreea-Voichița SG, Bejusca-Vieriu T, Lungulescu CV, Sur D, Boboc D. Oncolytic Virotherapy: A New Paradigm in Cancer Immunotherapy. Int J Mol Sci. 2024;25(2):1180. DOI: 10.3390/ijms25021180

11. Hemminki O, Dos Santos JM, Hemminki A. Oncolytic viruses for cancer immunotherapy. J Hematol Oncol. 2020;13(1):84. DOI: 10.1186/s13045-020-00922-1

12. Rahman MM, McFadden G. Oncolytic viruses: Newest Frontier for Cancer Immunotherapy. Cancers. 2021;13(21):5452. DOI: 10.3390/cancers13215452

13. Harrington K, Freeman DJ, Kelly B, Harper J, Soria JC. Optimizing oncolytic virotherapy in cancer treatment. Nat Rev Drug Discov. 2019;18(9):689–706. DOI: 10.1038/s41573-019-0029-0

14. Lawler SE, Speranza MC, Cho CF, Chiocca EA. Oncolytic viruses in cancer treatment: a Review. JAMA Oncol. 2017;3(6):841849. DOI: 10.1001/jamaoncol.2016.2064

15. Zainutdinov SS, Kochneva GV, Netesov SV, Chumakov PM, Matveeva OV. Directed evolution as a tool for the selection of oncolytic RNA viruses with desired phenotypes. Oncolytic Virotherapy. 2019;8:9–26. DOI: 10.2147/OV.S176523. eCollection 2019

16. Engeland CE, Ungerechts G. Measles virus as an oncolytic immunotherapy. Cancers. 2021;13(3):544. DOI: 10.3390/cancers13030544

17. Lin LT, Richardson CD. The host cell receptors for measles virus and their interaction with the viral hemagglutinin (H) protein. Viruses. 2016;8(9):250. DOI: 10.3390/v8090250

18. He Y, Mueller S, Chipman PR, Bator CM, Peng X, Bowman VD, Mukhopadhyay S, Wimmer E, Kuhn RJ, Rossmann MG. Complexes of poliovirus serotypes with their common cellular receptor, CD155. J Virol. 2003;77(8):4827–35. DOI: 10.1128/jvi.77.8.4827-4835.2003

19. Bergelson JM, Shepley MP, Chan BM, Hemler ME, Finberg RW. Identification of the integrin VLA-2 as a receptor for echovirus 1. Science. 1992;255(5052):1718–1720. DOI: 10.1126/science.1553561

20. Rahman MM, McFadden G. Oncolytic virotherapy with Myxoma virus. J Clin Med. 2020;9(1):171. DOI: 10.3390/jcm9010171

21. Rahman MM, McFadden G. Myxoma virus-encoded host range protein M029: a multifunctional antagonist targeting multiple host antiviral and innate immune pathways. Vaccines. 2020;8(2):244. DOI: 10.3390/vaccines8020244

22. Matveeva OV, Chumakov PM. Defects in interferon pathways as potential biomarkers of sensitivity to oncolytic viruses. Rev Med Virol. 2018;28:e2008. DOI: 10.1002/rmv.2008

23. Cai J, Zhu W, Lin Y, Hu J, Liu X, Xu W, Liu Y, Hu C, He S, Gong S, Yan G, Liang J. Lonidamine potentiates the oncolytic efficiency of M1 virus independent of hexokinase 2 but via inhibition of antiviral immunity. Cancer Cell Int. 2020;20(1):532. DOI: 10.1186/s12935-020-01598-w

24. Garant KA, Shmulevitz M, Pan I, Daigle RM, Ahn DG, Gujar SA, Lee PWK. Oncolytic reovirus induces intracellular redistribution of RAS to promote apoptosis and progeny virus release. Oncogene. 2016;35(6):771–82. DOI: 10.1038/onc.2015.136

25. Pol JG, Workenhe ST, Konda P, Gujar S, Kroemer G. Cytokines in oncolytic virotherapy. Cytokine Growth Factor Rev. 2020;56:4–27. DOI: 10.1016/j.cytogfr.2020.10.007

26. Borrego-Diaz E, Mathew R, Hawkinson D, Esfandyari T, Liu Z, Lee PW, Farassati F. Pro-oncogenic cell signaling machinery as a target for oncolytic viruses. Curr Pharm Biotechnol. 2012;13(9):1742–9. DOI: 10.2174/138920112800958788

27. Conner J, Braidwood L, Brown SM. A strategy for systemic delivery of the oncolytic herpes virus HSV1716: redirected tropism by antibody-binding sites incorporated on the virion surface as a glycoprotein D fusion protein. Gene Ther. 2008;15(24):1579–92. DOI: 10.1038/gt.2008.121

28. Howells A, Marelli G, Lemoine NR, Wang Y. Oncolytic viruses – interaction of virus and tumor cells in the battle to eliminate cancer. Front Oncol. 2017;7:195. DOI: 10.3389/fonc.2017.00195

29. Seegers SL, Frasier C, Greene S, Nesmelova IV, Grdzelishvili VZ. Experimental evolution generates novel oncolytic vesicular stomatitis viruses with improved replication in virus-resistant pancreatic cancer cells. J Virol. 2020;94(3):e01643–19. DOI: 10.1128/JVI.01643-19

30. Uche IK, Kousoulas KG, Rider PJF. The effect of Herpes Simplex Virus-Type-1 (HSV-1) Oncolytic Immunotherapy on the Tumor Microenvironment. Viruses. 2021;13(7):1200. DOI: 10.3390/v13071200

31. Boagni DA, Ravirala D, Zhang SX. Current strategies in engaging oncolytic viruses with antitumor immunity. Mol Ther Oncolytics. 2021;22:98–113. DOI: 10.1016/j.omto.2021.05.002

32. Imre G. Cell death signaling in virus infection. Cell Signal. 2020;76:109772. DOI: 10.1016/j.cellsig.2020.109772

33. Rex DAB, Prasad TSK, Kandasamy RK. Revisiting Regulated Cell Death Responses in Viral Infections. Int J Mol Sci. 2022;23:7023. DOI: 10.3390/ijms23137023

34. Ahmed J, Chard LS, Yuan M, Wang J, Howells A, Li Y, Li H, Zhang Z, Lu S, Gao D, Wang P, Chu Y, Al Yaghchi C, Schwartz J, Alusi G, Lemoine N, Wang Y. A new oncolytic V vaccinia virus augments antitumor immune responses to prevent tumor recurrence and metastasis after surgery. J Immunother Cancer. 2020;8(1):e000415. DOI: 10.1136/jitc-2019-000415

35. Prestwich RJ, Harrington KJ, Pandha HS, Vile R, Melcher AA, Errington F. Oncolytic viruses: a novel form of immunotherapy. Expert Rev Anticancer Ther. 2008;8(10):1581–8. DOI: 10.1586/14737140.8.10.1581

36. Malka D, Lièvre A, André T, Taïeb J, Ducreux M, Bibeau F. Immune scores in colorectal cancer: where are we. Eur J Cancer. 2020;140:105–18. DOI: 10.1016/j.ejca.2020.08.024

37. Guo ZS, Liu Z, Bartlett DL. Oncolytic immunotherapy: dying the right way is a key to eliciting potent antitumor immunity. Front Oncol. 2014;4:74. DOI: 10.3389/fonc.2014.00074

38. Laoui D, Keirsse J, Morias Y, Van Overmeire E, Geeraerts X, Elkrim Y, Kiss M, Bolli E, Lahmar Q, Sichien D, Serneels J, Scott CL, Boon L, De Baetselier P, Mazzone M, Guilliams M, Van Ginderachter JA. The tumor microenvironment harbors ontogenically distinct dendritic cell populations with opposing effects on tumor immunity. Nat Commun. 2016;7:13720. DOI: 10.1038/ncomms13720

39. Nguyen H-M, Guz-Montgomery K, Saha D. Oncolytic virus encoding a master pro-inflammatory cytokine 12 in cancer immunotherapy. Cells. 2020;9:400. DOI: 10.3390/cells9020400

40. Ghouse SM, Nguyen H-M, Bommareddy PK, Guz-Montgomery K, Saha D. Oncolytic herpes simplex virus encoding IL12 controls triple-negative breast cancer growth and metastasis. Front Oncol. 2020;10:384. DOI: 10.3389/fonc.2020.00384

41. Yang M, Giehl E, Feng C, Feist M, Chen H, Dai E, Liu Z, Ma C, Ravindranathan R, Bartlett DL, Lu B, Guo ZS. IL-36γ-armed oncolytic virus exerts superior efficacy through induction of potent adaptive antitumor immunity. Cancer Immunol Immunother. 2021;70(9):2467–81. DOI: 10.1007/s00262-021-02860-4

42. Jayasingam SD, Citartan M, Thang TH, Mat Zin AA, Ang KC, Ch’ng ES. Evaluating the polarization of tumor-associated macrophages into M1 and M2 phenotypes in human cancer tissue: Technicalities and challenges in routine clinical practice. Front Oncol. 2020;9:1512. DOI: 10.3389/fonc.2019.01512

43. Kumar V, Giacomantonio MA, Gujar S. Role of myeloid cells in oncolytic reovirus-based cancer therapy. Viruses. 2021;13(4):654. DOI: 10.3390/v13040654

44. Kwan A, Winder N, Atkinson E, Al-Janabi H, Allen RJ, Hughes R, Moamin M, Louie R, Evans D, Hutchinson M, Capper D, Cox K, Handley J, Wilshaw A, Kim T, Tazzyman SJ, Srivastava S, Ottewell P, Vadakekolathu J, Pockley G, Lewis CE, Brown JE, Danson SJ, Conner J, Muthana M. Macrophages mediate the antitumor effects of the oncolytic virus HSV1716 in mammary tumors. Mol Cancer Ther. 2021;20(3):589–601. DOI: 10.1158/1535-7163.MCT-20-0748

45. El-Sherbiny YM, Holmes TD, Wetherill LF, Black EV, Wilson EB, Phillips SL, Scott GB, Adair RA, Dave R, Scott KJ, Morgan RS, Coffey M, Toogood GJ, Melcher AA, Cook GP. Controlled infection with a therapeutic virus defines the activation kinetics of human natural killer cells in vivo. Clin Exp Immunol. 2015;180(1):98–107. DOI: 10.1111/cei.12562

46. Chouljenko DV, Ding J, Lee IF, Murad YM, Bu X, Liu G, Delwar Z, Sun Y, Yu S, Samudio I, Zhao R, Jia W W-G. Induction of durable antitumor response by a novel oncolytic herpesvirus expressing multiple immunomodulatory transgenes. Biomedicines. 2020;8(11):484. DOI: 10.3390/biomedicines8110484

47. Li K, Shi H, Zhang B, Ou X, Ma Q, Chen Y, Shu P, Li D, Wang Y. Myeloid-derived suppressor cells as immunosuppressive regulators and therapeutic targets in cancer. Signal Transduct Target Ther. 2021;6(1):362. DOI: 10.1038/s41392-021-00670-9

48. Katayama Y, Tachibana M, Kurisu N, Oya Y, Terasawa Y, Goda H, Kobiyama K, Ishii KJ, Akira S, Mizuguchi H, Sakurai F. Oncolytic reovirus inhibits immunosuppressive activity of myeloid-derived suppressor cells in a TLR3-dependent manner. J Immunol. 2018;200(8):2987–99. DOI: 10.4049/jimmunol.1700435

49. Nguyen TT, Shin DH, Sohoni S, Singh SK, Rivera-Molina Y, Jiang H, Fan X, Gumin J, Lang FF, Alvarez-Breckenridge C, Godoy-Vitorino F, Zhu L, Zheng WJ, Zhai L, Ladomersky E, Lauing KL, Alonso MM, Wainwright DA, Gomez-Manzano C, Fueyo J. Reshaping the tumor microenvironment with oncolytic viruses, positive regulation of the immune synapse, and blockade of the immunosuppressive oncometabolic circuitry. J Immunother Cancer. 2022;10(7):e004935. DOI: 10.1136/ jitc-2022-004935

50. Ferguson MS, Lemoine NR, Wang Y. Systemic delivery of oncolytic viruses: hopes and hurdles. Adv Virol. 2012;2012:805629. DOI: 10.1155/2012/805629

51. Chen L, Zuo M, Zhou Q, Wang Y. Oncolytic virotherapy in cancer treatment: challenges and optimization prospects. Front Immunol. 2023;14:1308890. DOI: 10.3389/fimmu.2023.1308890

52. Kurokawa C, Iankov ID, Anderson SK, Aderca I, Leontovich AA, Maurer MJ, Oberg AL, Schroeder MA, Giannini C, Greiner SM, Becker MA, Thompson EA, Haluska P, Jentoft ME, Parney IF, Weroha SJ, Jen J, Sarkaria JN, Galanis E. Constitutive interferon pathway activation in tumors as an efficacy determinant following oncolytic virotherapy. J Natl Cancer Inst. 2018;110(10):1123–32. DOI: 10.1093/jnci/djy033

53. Ebrahimi S, Ghorbani E, Khazaei M, Avan A, Ryzhikov M, Azadmanesh K, Hassanian SM. Interferon-mediated tumor resistance to oncolyc virotherapy. J Cell Biochem. 2017;118:1994–9. DOI: 10.1002/jcb.25917

54. Lin D, Shen Y, Liang TL. Oncolytic virotherapy: basic principles, recent advances and future directions. Signal Transduction and Targeted Therapy. 2023;8(1):156. DOI: 10.1038/s41392-023-01407-6

55. Meyers DE, Wang AA, Thirukkumaran CM, Morris DG. Current immunotherapeutic strategies to enhance oncolytic virotherapy. Front Oncol. 2017;7:114. DOI: 10.3389/fonc.2017.00114

56. Rasa A, Alberts P. Oncolytic virus preclinical toxicology studies. J Appl Toxicol. 2023;43(5):620–48. DOI: 10.1002/jat.4408

57. Alberts P, Tilgase A, Rasa A, Bandere K, Venskus D. The advent of oncolytic virotherapy in oncology: The Rigvir® story. Eur J Pharmacol. 2018;837:117–226. DOI: 10.1016/j.ejphar.2018.08.042

58. Tilgase A, Patetko L, Blāķe I, Ramata-Stunda A, Borodušķis M, Alberts P. Effect of the oncolytic ECHO-7 virus Rigvir® on the viability of cell lines of human origin in vitro. J Cancer. 2018;9(6):1033–1049. DOI: 10.7150/jca.23242

59. Tilgase A, Grīne L, Blāķe I, Borodušķis M, Rasa A, Alberts P. Effect of oncolytic ECHO-7 virus strain Rigvir on uveal melanoma cell lines. BMC research Notes. 2020;13(1):222–222. DOI: 10.1186/s13104-020-05068-4

60. Piwoni K, Jaeckel G, Rasa A, Alberts P. 4-Week repeated dose rat GLP toxicity study of oncolytic ECHO-7 virus Rigvir administered intramuscularly with a 4-week recovery period. Toxicol Rep. 2021;8:230–8. DOI: 10.1016/j.toxrep.2021.01.009

61. Annels NE, Mansfield D, Arif M, Ballesteros-Merino C, Simpson GR, Denyer M, Sandhu SS, Melcher AA, Harrington KJ, Davies B, Au G, Grose M, Bagwan I, Fox B, Vile R, Mostafid H, Shafren D, Pandha HS. Phase I trial of an ICAM-1-targeted immunotherapeutic-coxsackievirus A21 (CVA21) as an oncolytic agent against non-muscle-invasive bladder cancer. Clin Cancer Res. 2019;25(19):5818–31. DOI: 10.1158/1078-04321.CCr-18-4022

62. Hamid О, Ismail R, Puzanov I. Intratumoral immunotherapy-update 2019. The Oncologist. 2020;25(3):e423-e438. DOI: 10.1634/theoncologist.2019-0438

63. Au GG, Lindberg AM, Barry RD, Shafren DR. Oncolysis of vascular malignant human melanoma tumors by Coxsackievirus A21. Int J Oncol. 2005;26(6):1471–6. DOI: 10.3892/ijo.26.6.1471

64. Skelding KA, Barry RD, Shafren DR. Systemic targeting of metastatic human breast tumor xenografts by Coxsackievirus A21. Breast Cancer Research and Treatment. 2009;113(1):21–30. DOI: 10.1007/s10549-008-9899-2

65. Bradley S, Jakes AD, Harrington K, Pandha H, Melcher A, Errington-Mais F. Application of coxsackievirus A21 in oncology. Oncolytic Virotherapy. 2014;3:47–55. DOI: 10.2147/OV.S56322

66. Dighe OR, Korde P, Bisen YT, Iratwar S, Kesharwani A, Vardhan S, Singh A. Emerging recombinant oncolytic poliovirus therapies against malignant glioma: A Review. Cureus. 2023;15(1):e34028. DOI: 10.7759/cureus.34028

67. Gromeier M, Nair SK. Recombinant poliovirus for cancer immunotherapy. Annu Rev Med. 2018;69:289–99. DOI: 10.1146/annurev-med-050715-104655

68. Georgescu MM, Balanant J, Macadam A, Otelea D, Combiescu M, Combiescu AA, Crainic R, Delpeyroux F. Evolution of the Sabin type I poliovirus in humans: characterization of strains isolated from patients with vaccine-associated paralytic poliomyelitis. J Virol. 1997;71(10):7758–68. DOI: 10.1128/JVI.71.10.7758-7768.1997

69. Gromeier M, Alexander L, Wimmer E. Internal ribosomal entry site substitution eliminates neurovirulence in intergeneric poliovirus recombinants. Proc Natl Acad Sci USA. 1996;93(6):2370–2375. DOI: 10.1073/pnas.93.6.2370

70. Dobrikova EY, Goetz C, Walters RW, Lawson SK, Peggins JO, Muszynski K, Ruppel S, Poole K, Giardina SL, Vela EM, Estep JE, Gromeier M. Attenuation of neurovirulence, biodistribution, and shedding of poliovirus:rhinovirus chimera after intrathalamic inoculation in Macaca fascicularis. J Virol. 2012;86(5):2750–9. DOI: 10.1128/JVI.06427-11

71. Chandramohan V, Bryant JD, Piao H, Keir ST, Lipp ES, Lefaivre M, Perkinson K, Bigner DD, Gromeier M, McLendon RE. Validation and immunohistochemistry assay for detection of CD155, the poliovirus receptor in malignant gliomas. Arch Path Lab Med. 2017;141(12):1697–704. DOI: 10.5858/arpa.2016-0580-OA

72. Paolini R, Molfetta R. CD155 and Its Receptors as Targets for Cancer Therapy. Int J Mol Sci. 2023;24(16):12958. DOI: 10.3390/ijms241612958

73. Blake SJ, Stannard K, Liu J, Allen S, Yong MC, Mittal D, Aguilera AR, Miles JJ, Lutzky VP, de Andrade LF, Martinet L, Colonna M, Takeda K, Kühnel F, Gurlevik E, Bernhardt G, Teng MW, Smyth MJ. Suppression of metastases using a new lymphocyte checkpoint target for cancer immunotherapy. Cancer Discov. 2016;6(4):446–59. DOI: 10.1158/2159-8290.CD-15-0944

74. Dougall WC, Kurtulus S, Smyth MJ, Anderson AC. TIGIT and CD96: new checkpoint receptor targetsfor cancer immunotherapy. Immunol Rev. 2017;276(1):112–20. DOI: 10.1111/imr.12518

75. Brown MC, Gromeier M. Cytotoxic and immunogenic mechanisms of recombinant oncolytic poliovirus. Curr Opin Viro. 2015;13:81–5. DOI: 10.1016/j.coviro.2015.05.007

76. Holl EK, Brown MC, Boczkowski D, McNamara MA, George DJ, Bigner DD, Gromeier M, Nair SK. Recombinant oncolytic poliovirus, PVSRIPO, has potent cytotoxic and innate inflammatory effects, mediating therapy in human breast and prostate cancer xenograft models. Oncotarget. 2016;7(48):79828–841. DOI: 10.18632/oncotarget.12975

77. Varela ML, Comba A, Faisal SM, Argento A, Franson A, Barissi MN, Sachdev S, Castro MG, Lowenstein PR. Gene therapy for high grade glioma: The clinical experience. Expert Opin Biol Ther. 2023;23(2):145–61. DOI: 10.1080/14712598.2022.2157718

78. Čēma I, Kleina R, Doniņa S, Isajevs S, Zablocka T, Rasa A, Alberts P. Stage IIA Skin Melanoma Treatment With ECHO-7 Oncolytic Virus Rigvir. Perm J. 2022;26(3):139–44. DOI: 10.7812/TPP/21.232

79. Wei D, Xu J, Liu XY, Chen ZN, Bian H. Fighting cancer with viruses: oncolytic virus therapy in China. Hum Gene Ther. 2018;29(2):151–9. DOI: 10.1089/hum.2017.212

80. Raman SS, Hecht JR, Chan E. Talimogene laherparepvec: Review of its mechanism of action and clinical efficacy and safety. Immunotherapy. 2019;11(8):705–23. DOI: 10.2217/imt-2019-0033

81. Malvehy J, Samoylenko I, Schadendorf D, Gutzmer R, Grob J-J, Sacco JJ. Talimogene laherparepvec upregulates immune-cell populations in non-injected lesions: findings from a phase II, multicenter, open-labelstudy in patients with stage IIIB-IVM1c melanoma. J Immunother Cancer. 2021;9(3):e001621. DOI: 10.1136/jitc-2020-001621

82. Andtbacka RHI, Amatruda T, Nemunaitis J, Zager JS, Walker J, Chesney JA, Liu K, Hsu CP, Pickett CA, Mehnert JM. Biodistribution, shedding, and transmissibility of the oncolytic virus talimogene laherparepvec in patients with melanoma. EBioMedicine. 2019;47:89–97. DOI: 10.1016/j.ebiom.2019.07.066

83. Andtbacka RHI, Collichio F, Harrington KJ, Middleton MR, Downey G, Ӧhrling K, Kaufman L. Final analyses of OPTiM: a randomized phase III trial of Talimogene laherparepvec versus granulocyte-macrophage colony-stimulating factor in unresectable stage III-IV melanoma. J Immunother Cancer. 2019;7(1):145. DOI: 10.1186/s40425-019-0623-z

84. Sugawara K, Iwai M, Ito H, Tanaka M, Seto Y, Todo T. Oncolytic herpes virus G47Δ works synergistically with CTLA-4 inhibition via dynamic intratumoral immune modulation. Mol Ther Oncolytics. 2021;22:129–42. DOI: 10.1016/j.omto.2021.05.004

85. Todo T, Ino Y, Ohtsu H, Shibahara J, Tanaka M. A phase I/II study of triple-mutated oncolytic herpes virus G47Δ in patients with progressive glioblastoma. Nat Commun. 2022;13(1):4119. DOI: 10.1038/s41467-022-31262-y

86. Todo T, Ito H, Ino Y, Ohtsu H, Ota Y, Shibahara J, Tanaka M. Intratumoral oncolytic herpes virus G47∆ for residual or recurrent glioblastoma: a phase 2 trial. Nat Med. 2022;28(8):1630–9. DOI: 10.1038/s41591-022-01897-x

87. Tamadaho RSE, Hoerauf A, Layland LE. Immunomodulatory effects of myeloid-derived suppressor cells in diseases: role in cancer and infections. Immunobiology. 2018;223(4-5):432–442. DOI: 10.1016/j.imbio.2017.07.001

88. Yamazaki N, Isei T, Kiyohara Y, Koga H, Kojima T, Takenouchi T, Yokota K, Namikawa K, Yi M, Keegan A, Fukushima S. A phase I study of the safety and efficacy of talimogene laherparepvec in Japaneses patients with advanced melanoma. Cancer Sci. 2022;113(8):2798–806. DOI: 10.1111/cas.15450

89. Andtbacka RHI, Curti B, Daniels GA, Hallmeyer S, Whitman ED, Lutzky J, Spitler LE, Zhou K, Bommareddy PK, Grose M, Wang M, Wu C, Kaufman HL. Clinical responses of oncolytic coxsackievirus A21(V937) in patients with unresectable melanoma. J Clin Oncol. 2021;39(34):3829–38. DOI: 10.1200/JCO.20.03246

90. Beasley GM, Nair SK, Farrow NE, Landa K, Selim MA, Wiggs CA, Jung SH, Bigner DD, True Kelly A, Gromeier M, Salama AK. Phase I trial of intratumoral PVSRIPO in patients with unresectable, treatment-refractory melanoma. J immunother Cancer. 2021;9(4):e002203. DOI: 10.1136/jitc-2020-002203

91. Fares J, Ahmed AU, Ulasov IV, Sonabend AM, Miska J, Lee-Chang C, Balyasnikova IV, Chandler JP, Portnow J, Tate MC, Kumthekar P, Lukas RV, Grimm SA, Adams AK, Hébert CD, Strong TV, Amidei C, Arrieta VA, Zannikou M, Horbinski C, Zhang H, Burdett KB, Curiel DT, Sachdev S, Aboody KS, Stupp R, Lesniak MS. Neural stem cell delivery of an oncolytic adenovirus in newly diagnosed malignant glioma: a first-in-human, phase I, dose-escalation trial. Lancet Oncol. 2021;22(8):1103–14. DOI: 10.1016/S1470-2045(21)00245-X

92. Friedman GK, Johnston JM, Bag AK, Bernstock JD, Li R, Aban I, Kachurak K, Nan L, Kang KD, Totsch S, Schlappi C, Martin AM, Pastakia D, McNall-Knapp R, Farouk Sait S, Khakoo Y, Karajannis MA, Woodling K, Palmer JD, Osorio DS, Leonard J, Abdelbaki MS, Madan-Swain A, Atkinson TP, Whitley RJ, Fiveash JB, Markert JM, Gillespie GY. Oncolytic HSV-1 G207 immunovirotherapy for pediatric high-grade gliomas. N Engl J Med. 2021;384(17):1613–22. DOI: 10.1056/NEJMoa2024947

93. Desjardins A, Gromeier M, Herndon JE 2nd, Beaubier N, Bolognesi DP, Friedman AH, Friedman HS, McSherry F, Muscat AM, Nair S, Peters KB, Randazzo D, Sampson JH, Vlahovic G, Harrison WT, McLendon RE, Ashley D, Bigner DD. Recurrent glioblastoma treated with recombinant poliovirus. N Engl J Med. 2018;379(2):150–61. DOI: 10.1056/NEJMoa1716435

94. Lauer UM, Beil J. Oncolytic viruses: challenges and considerations in an evolving clinical landscape. Future Oncology. 2022;18(24):2713–32. DOI: 10.2217/fon-2022-0440

95. Lutzky J, Sullivan R, Cohen JV, Ren Y, Li A, Haq R. Phase 1b study of intravenous coxsackievirus A21 (V937) and ipilimumab for patients with metastatic uveal melanoma. J Cancer Res Clin Oncol. 2023;149(9):6059–66. DOI: 10.1007/s00432-022-04510-3

96. Olivet MM, Brown MC, Reitman ZJ, Ashley DM, Grant GA, Yang Y, Markert JM. Clinical Applications of Immunotherapy for Recurrent Glioblastoma in Adults. Cancers. 2023;15(15):3901. DOI: 10.3390/cancers15153901


Review

For citations:


Nemtsova E.R., Plotnikova E.A. Modern Approaches to Enterovirus-Based Oncolytic Immune Virotherapy of Malignant Diseases. Pharmacy & Pharmacology. 2025;13(2):111-127. https://doi.org/10.19163/2307-9266-2025-13-2-111-127

Views: 22


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2307-9266 (Print)
ISSN 2413-2241 (Online)