Preview

Pharmacy & Pharmacology

Advanced search

A Comprehensive Review of the Pharmacological, Therapeutic, and Toxicological Properties of Boric Acid and Other Boron-Containing Compounds: Current Landscape and Future Perspectives

https://doi.org/10.19163/2307-9266-2025-13-3-202-238

Abstract

The aim. In this review, information obtained through a comprehensive scan of scientific resources on recent developments in the field of health regarding boric acids and BCCs is brought together, and current and future perspectives are presented.

Matherial and methods. The literature studies on boron were collected using multiple databases (WOS, PubMed, Scopus, Science Direct, SciVerse, SciELO, Cochrane Library, Embase and Google Scholar). The health effects of boric acids and BCCs used in preclinical and clinical studies were systematically compiled.

Results and conclusion. Different natural and synthetic boron-containing compounds (BCCs) are increasingly used in the healthcare sector. To date, five BCCs drugs (bortezomib, crisaborole, ixazomib, tavaborole and vaborbactam) have been approved by the Food and Drug Administration, for diverse clinical applications. It is also understood that more than ten boron-based compounds (alabostat, sodium borocaptate, voromycin, TOL-463 and others) are being investigated in different clinical trial phases. In addition, it is seen that clinical studies are continuing for combinations of various drugs with BCCs for use in new indications. In addition, it is observed that boron and boron-containing compounds are widely used as supplements. This review also provides an overview of recent advances in the pharmacological activities of boric acids and BCCs, including antioxidant, anti-inflammatory, anti-atherosclerotic, anticancer, antimicrobial, antiparasitic, antiviral, antiprotozoal, cardioprotective, hepatoprotective, neuroprotective, osteoprotective, antidiabetic, anti-apoptotic, anti-obesity, ferroptosis properties, effects on immune system, antiepileptic, anti-Parkinson, and anti-Alzheimer’s activities and the mechanisms of action involved, obtained from both in vitro and in vivo studies.

About the Authors

O. Yunusoglu
Bolu Abant Izzet Baysal University.
Turkey

Assistant Professor of the Department of Medical Pharmacology in Faculty of Medicine, Bolu Abant Izzet Baysal University. 

Golkoy Campus, Bolu Merkez/Bolu, Turkiye, 14030.



I. Kalfa
Bolu Abant Izzet Baysal University.
Turkey

Master’s degree student of Medical Pharmacology Department in Faculty of Medicine, Bolu Abant Izzet Baysal University. 

Golkoy Campus, Bolu Merkez/Bolu, Turkiye, 14030.



M. E. Demirel
Bolu Abant Izzet Baysal University.
Turkey

Doctor of Sciences (Medicine), Faculty Member of the Department of Emergency in Faculty of Medicine, Bolu Abant Izzet Baysal University. 

Golkoy Campus, Bolu Merkez/Bolu, Turkiye, 14030.



M. A. Binzet
Bolu Abant Izzet Baysal University.
Turkey

Candidate of Sciences (Medicine), Doctor in Faculty of Medicine, Bolu Abant İzzet Baysal University. 

Golkoy Campus, Bolu Merkez/Bolu, Turkiye, 14030.



U. Z. Sevinc
Bolu Abant Izzet Baysal University.
Turkey

Master’s degree student of the Department of Medical Pharmacology in Faculty of Medicine, Bolu Abant Izzet Baysal University. 

Golkoy Campus, Bolu Merkez/Bolu, Turkiye, 14030.



I. Turel
Bolu Abant Izzet Baysal University.
Turkey

Doctor of Sciences (Medicine), Professor, Head of the Department of Medical Pharmacology in Faculty of Medicine, Bolu Abant Izzet Baysal University. 

Golkoy Campus, Bolu Merkez/Bolu, Turkiye, 14030.



A. H. Kurt
Bolu Abant Izzet Baysal University.
Turkey

Doctor of Sciences (Medicine), Professor of the Department of Medical Pharmacology in Faculty of Medicine, Bolu Abant Izzet Baysal University. 

Golkoy Campus, Bolu Merkez/Bolu, Turkiye, 14030.



References

1. Khaliq H, Juming Z, Ke-Mei P. The Physiological Role of Boron on Health. Biol Trace Elem Res. 2018;186(1):31–51. DOI: 10.1007/s12011-018-1284-3

2. Dembitsky VM, Smoum R, Al-Quntar AA, Abu Ali H, Pergament I, Srebnik M. Natural occurrence of boron-containing compounds in plants, algae and microorganisms. Plant Science. 2002;163(5):931–942. DOI: 10.1016/S0168-9452(02)00174-7

3. Elevli B, Yaman İ, Laratte B. Estimation of the Turkish Boron Exportation to Europe. Mining. 2022;2(2):155–169. DOI: 10.3390/mining2020009

4. Kabu M, Akosman MS. Biological effects of boron. Rev Environ Contam Toxicol. 2013;225:57–75. DOI: 10.1007/978-1-4614-6470-9_2

5. Kabu M, Civelek T. The effects of borax on milk yield and selected metabolic parameters in Austrian Simmental (Fleckvieh) cows. Revue de Medecine Veterinaire. 2012;163:419–430. DOI: 10.17221/8104-VETMED

6. Das BC, Thapa P, Karki R, Schinke C, Das S, Kambhampati S, Banerjee SK, Van Veldhuizen P, Verma A, Weiss LM, Evans T. Boron chemicals in diagnosis and therapeutics. Future Med Chem. 2013;5(6):653–676. DOI: 10.4155/fmc.13.38

7. Loomis WD, Durst RW. Chemistry and biology of boron. Biofactors. 1992;3(4):229–239.

8. Bernard CE, Harrass MC, Manning MJ. Hayes' Handbook of Pesticide Toxicology (Third Edition). New York: Academic Press; 2010. P. 2033–2053.

9. Nguyen VD, Nguyen VT, Jin S, Dang HT, Larionov OV. Organoboron chemistry comes to light: recent advances in photoinduced synthetic approaches to organoboron compounds. Tetrahedron. 2019;75(5):584–602. DOI: 10.1016/j.tet.2018.12.040

10. Wade CR, Broomsgrove AE, Aldridge S, Gabbaï FP. Fluoride ion complexation and sensing using organoboron compounds. Chem Rev. 2010;110(7):3958–3984. DOI: 10.1021/cr900401a

11. Jelinek R, Kolusheva S. Carbohydrate biosensors. Chem Rev. 2004;104(12):5987–6015. DOI: 10.1021/cr0300284

12. Diaz DB, Yudin AK. The versatility of boron in biological target engagement. Nat Chem. 2017;9(8):731–742. DOI: 10.1038/nchem.2814

13. Sauvage E, Zervosen A, Dive G, Herman R, Amoroso A, Joris B, Fonzé E, Pratt RF, Luxen A, Charlier P, Kerff F. Structural basis of the inhibition of class A beta-lactamases and penicillin-binding proteins by 6-beta-iodopenicillanate. J Am Chem Soc. 2009;131(42):15262–15269. DOI: 10.1021/ja9051526

14. Keskin E, Allahverdiyeva S, İzem Özok H, Yunusoğlu O, Yardım Y. Voltammetric Quantification of the Anesthetic Drug Propofol (2,6-Diisopropylphenol) in Pharmaceutical Formulations on a Boron-Doped Diamond Electrode: Scientific Paper. Journal of the Serbian Chemical Society. 2021;86(7-8):711–724. DOI: 10.2298/JSC201019017K

15. Sutradhar S, Rahaman R, Bhattacharya S, Paul S, Paine TK. Oxygenolytic cleavage of 1,2-diols with dioxygen by a mononuclear nonheme iron complex: Mimicking the reaction of myo-inositol oxygenase. J Inorg Biochem. 2024;257:112611. DOI: 10.1016/j.jinorgbio.2024.112611

16. Mamedov VA, Khafizova EA, Algaeva NE, Latypov SK, Sinyashin OG. Acid-Catalyzed Multicomponent Rearrangements via 2-((Quinoxalin-3(4H)-on-2-yl)(aryl)methylene)malononitriles, Generated In Situ, for Divergent Synthesis of Pyrroles with Different Substitution Patterns. J Org Chem. 2020;85(15):9887–9904. DOI: 10.1021/acs.joc.0c01180

17. Özok Hİ, Keskin E, Yardım Y. First voltammetric procedure for sensing synthetic thyroid hormone liothyronine sodium in tablet dosage form using anionic surfactant media at a boron-doped diamond electrode. Diamond and Related Materials. 2025;153:112078. DOI: 10.1016/j.diamond.2025.112078

18. Özok Hİ, Kıran M, Oruç Y, Yavuz Y. The First Electroanalytical Study Of Umifenovir (Arbidol) Used As A Potential Antiviral Drug For The Treatment of SARS-CoV-2: A Voltammetric Quantification On The Boron-Doped Diamond Electrode By Using Anionic Surfactant Media. J Electrochem Society. 2023;170(1):016501. DOI 10.1149/1945-7111/acafa7

19. Allahverdiyeva S., Keskin E, Pınar PT, Yunusoğlu O, Yardım Y, Şentürk Z. Electroanalytical investigation and determination of hepatitis C antiviral drug ledipasvir at a non-modified boron-doped diamond electrode. Diamond and Related Materials. 2020;108:107962. DOI: 10.1016/j.diamond.2020.107962

20. Wang W, Xiao K, Zheng X, Zhu D, Yang Z, Tang J, Sun P, Wang J, Peng K. Effects of supplemental boron on growth performance and meat quality in African ostrich chicks. J Agric Food Chem. 2014;62(46):11024–11029. DOI: 10.1021/jf501789t

21. Çinar M, Küçükyilmaz K, Bozkurt M, Çatli AU, Bintaş E, Akşit H, Konak R, Yamaner Ç, Seyrek K. Effects of dietary boron and phytase supplementation on growth performance and mineral profile of broiler chickens fed on diets adequate or deficient in calcium and phosphorus. Br Poult Sci. 2015;56(5):576–589. DOI: 10.1080/00071668.2015.1079699

22. Fort DJ. Boron deficiency disables Xenopus laevis oocyte maturation events. Biol Trace Elem Res. 2002;85(2):157–169. DOI: 10.1385/BTER:85:2:157

23. Hunt CD. Dietary boron: progress in establishing essential roles in human physiology. J Trace Elem Med Biol. 2012;26(2-3):157–160. DOI: 10.1016/j.jtemb.2012.03.014

24. Nielsen FH. Is boron nutritionally relevant? Nutr Rev. 2008;66(4):183–191. DOI: 10.1111/j.1753-4887.2008.00023.x

25. Bozkurt M, Küçükyılmaz K, Catlı AU, Cınar M, Cabuk M, Bintaş E. Effects of boron supplementation to diets deficient in calcium and phosphorus on performance with some serum, bone and fecal characteristics of broiler chickens. Asian-Australas J Anim Sci. 2012;25(2):248–255. DOI: 10.5713/ajas.2011.11211

26. Adya R, Tan BK, Chen J, Randeva HS. Nuclear factor-kappaB induction by visfatin in human vascular endothelial cells: its role in MMP-2/9 production and activation. Diabetes Care. 2008;31(4):758–760. DOI: 10.2337/dc07-1544

27. Cheng J, Peng K, Jin E, Zhang Y, Liu Y, Zhang N, Song H, Liu H, Tang Z. Effect of additional boron on tibias of African ostrich chicks. Biol Trace Elem Res. 2011;144(1-3):538–549. DOI: 10.1007/s12011-011-9024-y

28. Basoglu A, Sevinc M, Birdane FM, Boydak M. Efficacy of sodium borate in the prevention of fatty liver in dairy cows. J Vet Intern Med. 2002;16(6):732–735. DOI: 10.1892/0891-6640(2002)016<0732:eosbit>2.3.co;2. Erratum in: J Vet Intern Med. 2003;17(2):245.

29. Penland JG. Dietary boron, brain function, and cognitive performance. Environ Health Perspect. 1994;102 Suppl 7(Suppl 7):65–72. DOI: 10.1289/ehp.94102s765

30. Devirian TA, Volpe SL. The physiological effects of dietary boron. Crit Rev Food Sci Nutr. 2003;43(2):219–231. DOI: 10.1080/10408690390826491

31. Cortes S, Reynaga-Delgado E, Sancha AM, Ferreccio C. Boron exposure assessment using drinking water and urine in the North of Chile. Sci Total Environ. 2011;410–411:96–101. DOI: 10.1016/j.scitotenv.2011.08.073

32. Deutsche Gesellschaft für Anthropologie., and Australasian Society for Human Biology. Homo : Internationale Zeitschrift Für Die Vergleichende Forschung Am Menschen. Stuttgart: Enke., 1949.

33. Scorei RI, Popa R Jr. Boron-containing compounds as preventive and chemotherapeutic agents for cancer. Anticancer Agents Med Chem. 2010;10(4):346–351. DOI: 10.2174/187152010791162289

34. Ozansoy M, AltintaŞ MÖ, Ozansoy MB, GÜnay N, KiliÇ E, KiliÇ Ü. Two boron-containing compounds affect the cellular viability of SH-SY5Y cells in an in vitro amyloid-beta toxicity model. Turk J Biol. 2020;44(4):208–214. DOI: 10.3906/biy-2001-22

35. Barrón-González M, Montes-Aparicio AV, Cuevas-Galindo ME, Orozco-Suárez S, Barrientos R, Alatorre A, Querejeta E, Trujillo-Ferrara JG, Farfán-García ED, Soriano-Ursúa MA. Boron-containing compounds on neurons: Actions and potential applications for treating neurodegenerative diseases. J Inorg Biochem. 2023;238:112027. DOI: 10.1016/j.jinorgbio.2022.112027

36. Christopher R. Ethnobotanical uses, biological activities and phytochemistry of mangrove plant species: A review. Journal of Biologically Active Products from Nature. 2024;14(5):581–608. DOI: 10.1080/22311866.2024.2431963

37. Penland JG. Quantitative analysis of EEC effects following experimental marginal magnesium and boron deprivation. Magnesium Res. 1995;8(4):341–358.

38. Penland JG. The importance of boron nutrition for brain and psychological function. Biol Trace Elem Res. 1998;66(1-3):299–317. DOI: 10.1007/BF02783144

39. Soriano-Ursúa MA, Farfán-García ED, López-Cabrera Y, Querejeta E, Trujillo-Ferrara JG. Boron-containing acids: preliminary evaluation of acute toxicity and access to the brain determined by Raman scattering spectroscopy. Neurotoxicology. 2014;40:8–15. DOI: 10.1016/j.neuro.2013.10.005

40. Naghii MR, Darvishi P, Ebrahimpour Y, Ghanizadeh G, Mofid M, Hedayati M, Asgari AR. Effect of combination therapy of fatty acids, calcium, vitamin D and boron with regular physical activity on cardiovascular risk factors in rat. J Oleo Sci. 2012;61(2):103–111. DOI: 10.5650/jos.61.103

41. Benderdour M, Bui-Van T, Dicko A, Belleville F. In vivo and in vitro effects of boron and boronated compounds. J Trace Elem Med Biol. 1998;12(1):2–7. DOI: 10.1016/S0946-672X(98)80014-X

42. Henderson KA, Kobylewski SE, Yamada KE, Eckhert CD. Boric acid induces cytoplasmic stress granule formation, eIF2α phosphorylation, and ATF4 in prostate DU-145 cells. Biometals. 2015;28(1):133–141. DOI: 10.1007/s10534-014-9809-5

43. Barranco WT, Eckhert CD. Boric acid inhibits human prostate cancer cell proliferation. Cancer Lett. 2004;216(1):21–29. DOI: 10.1016/j.canlet.2004.06.001

44. Usuda K, Kono K, Dote T, Watanabe M, Shimizu H, Tanimoto Y, Yamadori E. An overview of boron, lithium, and strontium in human health and profiles of these elements in urine of Japanese. Environ Health Prev Med. 2007;12(6):231–237. DOI: 10.1007/BF02898029

45. Herrero M, Ibáñiez E, Cifuentes A. Analysis of natural antioxidants by capillary electromigration methods. J Sep Sci. 2005;28(9-10):883–897. DOI: 10.1002/jssc.200400104

46. Turkez H, Geyikoğlu F, Dirican E, Tatar A. In vitro studies on chemoprotective effect of borax against aflatoxin B1-induced genetic damage in human lymphocytes. Cytotechnology. 2012;64(6):607–612. DOI: 10.1007/s10616-012-9454-1

47. Turkez H, Tatar A, Hacimuftuoglu A, Ozdemir E. Boric acid as a protector against paclitaxel genotoxicity. Acta Biochim Pol. 2010;57(1):95–97.

48. Turkez H, Geyikoglu F, Tatar A, Keles MS, Kaplan I. The effects of some boron compounds against heavy metal toxicity in human blood. Exp Toxicol Pathol. 2012;64(1-2):93–101. DOI: 10.1016/j.etp.2010.06.011

49. Ustündağ A, Behm C, Föllmann W, Duydu Y, Degen GH. Protective effect of boric acid on lead- and cadmium-induced genotoxicity in V79 cells. Arch Toxicol. 2014;88(6):1281–1289. DOI: 10.1007/s00204-014-1235-5

50. Turkez H. Effects of boric acid and borax on titanium dioxide genotoxicity. J Appl Toxicol. 2008;28(5):658–664. DOI: 10.1002/jat.1318

51. Fernandes GFS, Denny WA, Dos Santos JL. Boron in drug design: Recent advances in the development of new therapeutic agents. Eur J Med Chem. 2019;179:791–804. DOI: 10.1016/j.ejmech.2019.06.092

52. Ban HS, Nakamura H. Boron-Based Drug Design. Chem Rec. 2015;15(3):616–635. DOI: 10.1002/tcr.201402100

53. Sharma N, Sharma D. An upcoming drug for onychomycosis: Tavaborole. J Pharmacol Pharmacother. 2015;6(4):236–239. DOI: 10.4103/0976-500X.171870

54. Dhillon S. Correction to: Meropenem/Vaborbactam: A Review in Complicated Urinary Tract Infections. Drugs. 2018;78(13):1383. DOI: 10.1007/s40265-018-0974-7. Erratum for: Drugs. 2018;78(12):1259–1270. DOI: 10.1007/s40265-018-0966-7

55. Fu Z, Lu C, Zhang C, Qiao B. PSMA5 promotes the tumorigenic process of prostate cancer and is related to bortezomib resistance. Anticancer Drugs. 2019;30(7):e0773. DOI: 10.1097/CAD.0000000000000773

56. Paller AS, Tom WL, Lebwohl MG, Blumenthal RL, Boguniewicz M, Call RS, Eichenfield LF, Forsha DW, Rees WC, Simpson EL, Spellman MC, Stein Gold LF, Zaenglein AL, Hughes MH, Zane LT, Hebert AA. Efficacy and safety of crisaborole ointment, a novel, nonsteroidal phosphodiesterase 4 (PDE4) inhibitor for the topical treatment of atopic dermatitis (AD) in children and adults. J Am Acad Dermatol. 2016;75(3):494–503.e6. DOI: 10.1016/j.jaad.2016.05.046. Erratum in: J Am Acad Dermatol. 2017;76(4):777. DOI: 10.1016/j.jaad.2017.01.026

57. Muz B, Ghazarian RN, Ou M, Luderer MJ, Kusdono HD, Azab AK. Spotlight on ixazomib: potential in the treatment of multiple myeloma. Drug Des Devel Ther. 2016;10:217–226. DOI: 10.2147/DDDT.S93602

58. Das BC, Adil Shareef M, Das S, Nandwana NK, Das Y, Saito M, Weiss LM. Boron-Containing heterocycles as promising pharmacological agents. Bioorg Med Chem. 2022;63:116748. DOI: 10.1016/j.bmc.2022.116748

59. Marrazzo JM, Dombrowski JC, Wierzbicki MR, Perlowski C, Pontius A, Dithmer D, Schwebke J. Safety and Efficacy of a Novel Vaginal Anti-infective, TOL-463, in the Treatment of Bacterial Vaginosis and Vulvovaginal Candidiasis: A Randomized, Single-blind, Phase 2, Controlled Trial. Clin Infect Dis. 2019;68(5):803–809. DOI: 10.1093/cid/ciy554

60. Grégoire V, Evans M, Le QT, Bourhis J, Budach V, Chen A, Eisbruch A, Feng M, Giralt J, Gupta T, Hamoir M, Helito JK, Hu C, Hunter K, Johansen J, Kaanders J, Laskar SG, Lee A, Maingon P, Mäkitie A, Micciche' F, Nicolai P, O'Sullivan B, Poitevin A, Porceddu S, Składowski K, Tribius S, Waldron J, Wee J, Yao M, Yom SS, Zimmermann F, Grau C. Delineation of the primary tumour Clinical Target Volumes (CTV-P) in laryngeal, hypopharyngeal, oropharyngeal and oral cavity squamous cell carcinoma: AIRO, CACA, DAHANCA, EORTC, GEORCC, GORTEC, HKNPCSG, HNCIG, IAG-KHT, LPRHHT, NCIC CTG, NCRI, NRG Oncology, PHNS, SBRT, SOMERA, SRO, SSHNO, TROG consensus guidelines. Radiother Oncol. 2018;126(1):3–24. DOI: 10.1016/j.radonc.2017.10.016

61. Yang H, Wang J, Zhang X, Zhang Y, Qin ZL, Wang H, Luo XY. Application of Topical Phosphodiesterase 4 Inhibitors in Mild to Moderate Atopic Dermatitis: A Systematic Review and Meta-analysis. JAMA Dermatol. 2019;155(5):585–593. DOI: 10.1001/jamadermatol.2019.0008. Erratum in: JAMA Dermatol. 2019;155(7):865. DOI: 10.1001/jamadermatol.2019.1346

62. Rezanka T, Sigler K. Biologically active compounds of semi-metals. Phytochemistry. 2008;69(3):585–606. DOI: 10.1016/j.phytochem.2007.09.018

63. Chong PY, Shotwell JB, Miller J, Price DJ, Maynard A, Voitenleitner C, Mathis A, Williams S, Pouliot JJ, Creech K, Wang F, Fang J, Zhang H, Tai VW, Turner E, Kahler KM, Crosby R, Peat AJ. Design of N-Benzoxaborole Benzofuran GSK8175-Optimization of Human Pharmacokinetics Inspired by Metabolites of a Failed Clinical HCV Inhibitor. J Med Chem. 2019;62(7):3254–3267. DOI: 10.1021/acs.jmedchem.8b01719

64. Diacon AH, Barry CE 3rd, Carlton A, Chen RY, Davies M, de Jager V, Fletcher K, Koh GCKW, Kontsevaya I, Heyckendorf J, Lange C, Reimann M, Penman SL, Scott R, Maher-Edwards G, Tiberi S, Vlasakakis G, Upton CM, Aguirre DB. A first-in-class leucyl-tRNA synthetase inhibitor, ganfeborole, for rifampicin-susceptible tuberculosis: a phase 2a open-label, randomized trial. Nat Med. 2024;30(3):896–904. DOI: 10.1038/s41591-024-02829-7

65. Sun D, Tsivkovski R, Pogliano J, Tsunemoto H, Nelson K, Rubio-Aparicio D, Lomovskaya O. Intrinsic Antibacterial Activity of Xeruborbactam In Vitro: Assessing Spectrum and Mode of Action. Antimicrob Agents Chemother. 2022;66(10):e0087922. DOI: 10.1128/aac.00879-22

66. Wall RJ, Rico E, Lukac I, Zuccotto F, Elg S, Gilbert IH, Freund Y, Alley MRK, Field MC, Wyllie S, Horn D. Clinical and veterinary trypanocidal benzoxaboroles target CPSF3. Proc Natl Acad Sci U S A. 2018;115(38):9616–9621. DOI: 10.1073/pnas.1807915115

67. Karlowsky JA, Hackel MA, Wise MG, Six DA, Uehara T, Daigle DM, Cusick SM, Pevear DC, Moeck G, Sahm DF. In Vitro Activity of Cefepime-Taniborbactam and Comparators against Clinical Isolates of Gram-Negative Bacilli from 2018 to 2020: Results from the Global Evaluation of Antimicrobial Resistance via Surveillance (GEARS) Program. Antimicrob Agents Chemother. 2023;67(1):e0128122. DOI: 10.1128/aac.01281-22

68. Jin WH, Seldon C, Butkus M, Sauerwein W, Giap HB. A Review of Boron Neutron Capture Therapy: Its History and Current Challenges. Int J Part Ther. 2022;9(1):71–82. DOI: 10.14338/IJPT-22-00002.1

69. Uluisik I, Karakaya HC, Koc A. The importance of boron in biological systems. J Trace Elem Med Biol. 2018;45:156–162. DOI: 10.1016/j.jtemb.2017.10.008. Erratum in: J Trace Elem Med Biol. 2019;55:215. DOI: 10.1016/j.jtemb.2018.04.001

70. Soriano-Ursúa MA, Farfán-García ED, Geninatti-Crich S. Turning Fear of Boron Toxicity into Boron-containing Drug Design. Curr Med Chem. 2019;26(26):5005–5018. DOI: 10.2174/0929867326666190327154954

71. Soriano-Ursúa MA, Das BC, Trujillo-Ferrara JG. Boron-containing compounds: chemico-biological properties and expanding medicinal potential in prevention, diagnosis and therapy. Expert Opin Ther Pat. 2014;24(5):485–500. DOI: 10.1517/13543776.2014.881472

72. Scorei R. Is boron a prebiotic element? A mini-review of the essentiality of boron for the appearance of life on earth. Orig Life Evol Biosph. 2012;42(1):3–17. DOI: 10.1007/s11084-012-9269-2

73. Song S, Gao P, Sun L, Kang D, Kongsted J, Poongavanam V, Zhan P, Liu X. Recent developments in the medicinal chemistry of single boron atom-containing compounds. Acta Pharm Sin B. 2021;11(10):3035–3059. DOI: 10.1016/j.apsb.2021.01.010

74. Maslah H, Skarbek C, Pethe S, Labruère R. Anticancer boron-containing prodrugs responsive to oxidative stress from the tumor microenvironment. Eur J Med Chem. 2020;207:112670. DOI: 10.1016/j.ejmech.2020.112670

75. Baker SJ, Ding CZ, Akama T, Zhang YK, Hernandez V, Xia Y. Therapeutic potential of boron-containing compounds. Future Med Chem. 2009;1(7):1275–1288. DOI: 10.4155/fmc.09.71

76. Nunes AT, Annunziata CM. Proteasome inhibitors: structure and function. Semin Oncol. 2017;44(6):377–380. DOI: 10.1053/j.seminoncol.2018.01.004

77. Soriano-Ursúa MA, Mancilla-Percino T, Correa-Basurto J, Querejeta E, Trujillo-Ferrara JG. Give boron a chance: boron containing compounds reach ionotropic and metabotropic transmembrane receptors. Mini Rev Med Chem. 2011;11(12):1031–1038. DOI: 10.2174/138955711797247743

78. Hunter P. Not boring at all. Boron is the new carbon in the quest for novel drug candidates. EMBO Rep. 2009;10(2):125–128. DOI: 10.1038/embor.2009.2

79. Das BC, Nandwana NK, Das S, Nandwana V, Shareef MA, Das Y, Saito M, Weiss LM, Almaguel F, Hosmane NS, Evans T. Boron Chemicals in Drug Discovery and Development: Synthesis and Medicinal Perspective. Molecules. 2022;27(9):2615. DOI: 10.3390/molecules27092615

80. Ri CC, Mf CR, D RV, T PC, F TC, Ir S, A AG, Ma SU. Boron-Containing Compounds for Prevention, Diagnosis, and Treatment of Human Metabolic Disorders. Biol Trace Elem Res. 2023;201(5):2222–2239. DOI: 10.1007/s12011-022-03346-9

81. Goldbach HE, Wimmer MA. Boron in plants and animals: Is there a role beyond cell-wall structure? Journal of Plant Nutrition and Soil Science. 2007;170(1):39–48. DOI: 10.1002/jpln.200625161

82. Tanaka M, Fujiwara T. Physiological roles and transport mechanisms of boron: perspectives from plants. Pflugers Arch. 2008;456(4):671–617. DOI: 10.1007/s00424-007-0370-8

83. Kohorn BD, Kohorn SL, Todorova T, Baptiste G, Stansky K, McCullough M. A dominant allele of Arabidopsis pectin-binding wall-associated kinase induces a stress response suppressed by MPK6 but not MPK3 mutations. Mol Plant. 2012;5(4):841–851. DOI: 10.1093/mp/ssr096

84. Matoh T, Ishigaki K, Mizutani M, Matsunaga W, Takabe K. Boron Nutrition of Cultured Tobacco BY-2 Cells: I. Requirement for and Intracellular Localization of Boron and Selection of Cells that Tolerate Low Levels of Boron. Plant Cell Physiology. 1992;33(8):1135–1141. DOI: 10.1093/oxfordjournals.pcp.a078365

85. Hu H, Brown PH. Localization of Boron in Cell Walls of Squash and Tobacco and Its Association with Pectin (Evidence for a Structural Role of Boron in the Cell Wall). Plant Physiol. 1994;105(2):681–689. DOI: 10.1104/pp.105.2.681

86. Hu H, Brown PH, Labavitch JM. Species variability in boron requirement is correlated with cell wall pectin. Journal of Experimental Botany. 1996;47(2):227–232. DOI: 10.1093/jxb/47.2.227

87. Sentürk NB, Kasapoglu B, Sahin E, Ozcan O, Ozansoy M, Ozansoy MB, Siyah P, Sezerman U, Sahin F. The Potential Role of Boron in the Modulation of Gut Microbiota Composition: An In Vivo Pilot Study. Pharmaceuticals. 2024;17(10):1334. DOI: 10.3390/ph17101334

88. Rondanelli M, Faliva MA, Peroni G, Infantino V, Gasparri C, Iannello G, Perna S, Riva A, Petrangolini G, Tartara A. Pivotal role of boron supplementation on bone health: A narrative review. J Trace Elem Med Biol. 2020;62:126577. DOI: 10.1016/j.jtemb.2020.126577

89. Vanderpool RA, Hoff D, Johnson PE. Use of inductively coupled plasma-mass spectrometry in boron-10 stable isotope experiments with plants, rats, and humans. Environ Health Perspect. 1994;102 Suppl 7(Suppl 7):13–20. DOI: 10.1289/ehp.94102s713

90. Nielsen FH. Update on human health effects of boron. J Trace Elem Med Biol. 2014;28(4):383–387. DOI: 10.1016/j.jtemb.2014.06.023

91. Dinca L, Scorei IR. Boron in Human Nutrition and its Regulations Use. Journal of Nutritional Therapeutics. 2013;2(1):22–29. DOI: 10.6000/1929-5634.2013.02.01.3

92. Levêque D, Carvalho MC, Maloisel F. Review. Clinical pharmacokinetics of bortezomib. In Vivo. 2007;21(2):273–278.

93. Murray FJ. A comparative review of the pharmacokinetics of boric acid in rodents and humans. Biol Trace Elem Res. 1998;66(1-3):331–341. DOI: 10.1007/BF02783146

94. Ciofani G. Potential applications of boron nitride nanotubes as drug delivery systems. Expert Opin Drug Deliv. 2010;7(8):889–893. DOI: 10.1517/17425247.2010.499897

95. Ocampo-Néstor AL, Trujillo-Ferrara JG, Abad-García A, Reyes-López C, Geninatti-Crich S, Soriano-Ursúa MA. Boron's journey: advances in the study and application of pharmacokinetics. Expert Opin Ther Pat. 2017;27(2):203–215. DOI: 10.1080/13543776.2017.1252750

96. Samman S, Naghii MR, Lyons Wall PM, Verus AP. The nutritional and metabolic effects of boron in humans and animals. Biol Trace Elem Res. 1998;66(1-3):227–235. DOI: 10.1007/BF02783140

97. Ku WW, Chapin RE, Moseman RF, Brink RE, Pierce KD, Adams KY. Tissue disposition of boron in male Fischer rats. Toxicol Appl Pharmacol. 1991;111(1):145–151. DOI: 10.1016/0041-008x(91)90143-3

98. WHO (World Health Organization), 2009. Boron in Drinking-water. Background document for development of WHO Guidelines for Drinking-water Quality. World Health Organization, Geneva, Switzerland. 28 p.

99. Erkeç ÖE, Huyut Z, Yunusoğlu O, Eren B. Effects of Ghrelin on Brain and Serum Inflammatory Parameters in PTZ-Kindling Model in Rats. Neurochem J. 2025;19:74–80. DOI: 10.1134/S1819712425700096

100. Bindu S, Mazumder S, Bandyopadhyay U. Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage: A current perspective. Biochem Pharmacol. 2020;180:114147. DOI: 10.1016/j.bcp.2020.114147

101. Davis A, Robson J. The dangers of NSAIDs: look both ways. Br J Gen Pract. 2016;66(645):172–173. DOI: 10.3399/bjgp16X684433

102. Cao J, Jiang L, Zhang X, Yao X, Geng C, Xue X, Zhong L. Boric acid inhibits LPS-induced TNF-alpha formation through a thiol-dependent mechanism in THP-1 cells. J Trace Elem Med Biol. 2008;22(3):189–195. DOI: 10.1016/j.jtemb.2008.03.005

103. Zhang X, Wang G, Chen S. Boric Acid Alleviates Lipopolysaccharide-Induced Acute Lung Injury in Mice. Biol Trace Elem Res. 2025;203(3):1494–1501. DOI: 10.1007/s12011-024-04240-2

104. Bozkurt SB, Hakki SS, Nielsen FH. Boric acid alleviates periodontal inflammation induced by IL-1β in human gingival fibroblasts. J Trace Elem Med Biol. 2024;84:127466. DOI: 10.1016/j.jtemb.2024.127466

105. Başeğmez M, Doğan MF. Effects of boric acid on oxidant-antioxidant, proinflammatory cytokine levels, and biochemical parameters in aged rats. Pam Med J. 2024;17(2):369–379. DOI: 10.31362/patd.1438593

106. Gündoğdu AÇ, Özbayer C, Kar F. Boric Acid Alleviates Gastric Ulcer by Regulating Oxidative Stress and Inflammation-Related Multiple Signaling Pathways. Biol Trace Elem Res. 2024;202(5):2124–2132. DOI: 10.1007/s12011-023-03817-7

107. Wu J-Y, Lay C-H, Chen C-C, Wu S-Y, Zhou D, Abdula PM. Textile wastewater bioremediation using immobilized Chlorella sp. Wu-G23 with continuous culture. Clean Techn Environ Policy. 2021;23;153–161. DOI: 10.1007/s10098-020-01847-6

108. Yamada KE, Eckhert CD. Boric Acid Activation of eIF2α and Nrf2 Is PERK Dependent: a Mechanism that Explains How Boron Prevents DNA Damage and Enhances Antioxidant Status. Biol Trace Elem Res. 2019;188(1):2–10. DOI: 10.1007/s12011-018-1498-4

109. Ince S, Keles H, Erdogan M, Hazman O, Kucukkurt I. Protective effect of boric acid against carbon tetrachloride-induced hepatotoxicity in mice. Drug Chem Toxicol. 2012;35(3):285–292. DOI: 10.3109/01480545.2011.607825

110. Chen S, Fan H, Pei Y, Zhang K, Zhang F, Hu Q, Jin E, Li S. MAPK Signaling Pathway Plays Different Regulatory Roles in the Effects of Boric Acid on Proliferation, Apoptosis, and Immune Function of Splenic Lymphocytes in Rats. Biol Trace Elem Res. 2024;202(6):2688–2701. DOI: 10.1007/s12011-023-03862-2

111. Karabağ F, İnce S, Demirel HH. Boric acid is associated with the suppression of apoptosis and endoplasmic reticulum stress in rat model of paracetamol -induced hepatotoxicity. Journal of Taibah University for Science. 2023;17(1):2250565. DOI: 10.1080/16583655.2023.2250565

112. Sevimli M, Bayram D, Özgöçmen M, Armağan I, Semerci Sevimli T. Boric acid suppresses cell proliferation by TNF signaling pathway mediated apoptosis in SW-480 human colon cancer line. J Trace Elem Med Biol. 2022;71:126958. DOI: 10.1016/j.jtemb.2022.126958

113. Gundogdu K, Gundogdu G, Demirkaya Miloglu F, Demirci T, Tascı SY, Abd El-Aty AM. Anti-Inflammatory Effects of Boric Acid in Treating Knee Osteoarthritis: Biochemical and Histopathological Evaluation in Rat Model. Biol Trace Elem Res. 2024;202(6):2744–2754. DOI: 10.1007/s12011-023-03872-0

114. Tekeli H, Ekren Asıcı GS, Bildik A. Anti- inflammatory effect of boric acid on cytokines in ovariectomy-induced rats. Cell Mol Biol (Noisy-le-grand). 2022;67(4):313–320. DOI: 10.14715/cmb/2021.67.4.35

115. Quintero-Rincón P, Caballero-Gallardo K, Olivero-Verbel J. Natural anticancer agents: prospection of medicinal and aromatic plants in modern chemoprevention and chemotherapy. Nat Prod Bioprospect. 2025;15(1):25. DOI: 10.1007/s13659-025-00511-0

116. Shahzadi A, Sonmez I, Allahverdiyev O, Onal B, Kandaz C. Cardiac Troponin-I (cTnI) a Biomarker of Cardiac Injuries Induced by Doxorubicin Alone and in Combination with Ciprofloxacin, Following Acute and Chronic Dose Protocol in Sprague Dawley Rats. Int J Pharmacol. 2014;10(5):258–266. DOI: 10.3923/ijp.2014.258.266

117. Kahraman E, Göker E. Boric acid exert anti-cancer effect in poorly differentiated hepatocellular carcinoma cells via inhibition of AKT signaling pathway. J Trace Elem Med Biol. 2022;73:127043. DOI: 10.1016/j.jtemb.2022.127043

118. Cabus U, Secme M, Kabukcu C, Cil N, Dodurga Y, Mete G, Fenkci IV. Boric acid as a promising agent in the treatment of ovarian cancer: Molecular mechanisms. Gene. 2021;796-797:145799. DOI: 10.1016/j.gene.2021.145799

119. Çakır Gündoğdu A, Arı NS, Höbel A, Şenol G, Eldiven Ö, Kar F. Boric Acid Exhibits Anticancer Properties in Human Endometrial Cancer Ishikawa Cells. Cureus. 2023;15(8):e44277. DOI: 10.7759/cureus.44277

120. Bayram D, Özgöçmen M, Çelik DA, Sarman E, Sevimli M. Does Boric Acid Inhibit Cell Proliferation on MCF-7 and MDA-MB-231 Cells in Monolayer and Spheroid Cultures by Using Apoptosis Pathways? Biol Trace Elem Res. 2024;202(5):2008–2021. DOI: 10.1007/s12011-023-03810-0

121. Aydin HE, Gunduz MK, Kizmazoglu C, Kandemir T, Arslantas A. Cytotoxic Effect of Boron Application on Glioblastoma Cells. Turk Neurosurg. 2021;31(2):206–210. DOI: 10.5137/1019-5149.JTN.30316-20.1

122. Lin SY, Lin CJ, Liao JW, Peir JJ, Chen WL, Chi CW, Lin YC, Liu YM, Chou FI. Therapeutic efficacy for hepatocellular carcinoma by boric acid-mediated boron neutron capture therapy in a rat model. Anticancer Res. 2013;33(11):4799–4809.

123. Turkez H, Arslan ME, Tatar A, Mardinoglu A. Promising potential of boron compounds against Glioblastoma: In Vitro antioxidant, anti-inflammatory and anticancer studies. Neurochem Int. 2021;149:105137. DOI: 10.1016/j.neuint.2021.105137

124. Scorei R, Ciubar R, Ciofrangeanu CM, Mitran V, Cimpean A, Iordachescu D. Comparative effects of boric acid and calcium fructoborate on breast cancer cells. Biol Trace Elem Res. 2008;122(3):197–205. DOI: 10.1007/s12011-007-8081-8

125. Sevimli TS, Ghorbani A, Gakhiyeva F, Cevizlidere BD, Sevimli M. Boric Acid Alters the Expression of DNA Double Break Repair Genes in MCF-7-Derived Breast Cancer Stem Cells. Biol Trace Elem Res. 2024;202(9):3980–3987. DOI: 10.1007/s12011-023-03987-4

126. Sezekler I, Ersoz M, Turan MA, Coskun ZM. Investigation of the biochemical and apoptotic changes in breast cancer cells treated with leaf extract from tea (Camellia sinensis L.) grown with added boric acid. Pak J Pharm Sci. 2020;33(5):1927–1932.

127. Aladağ T, Firat F. Comparative effects of boric acid and resveratrol on mcf-7 breast cancer cells metastatic behavior. International Journal of Research –Granthaalayah. 2022;10(1):34–46. DOI: 10.29121/granthaalayah.v10.i1.2022.4460

128. Hacioglu C, Kar F, Kacar S, Sahinturk V, Kanbak G. High Concentrations of Boric Acid Trigger Concentration-Dependent Oxidative Stress, Apoptotic Pathways and Morphological Alterations in DU-145 Human Prostate Cancer Cell Line. Biol Trace Elem Res. 2020;193(2):400–409. DOI: 10.1007/s12011-019-01739-x

129. Morana O, Wood W, Gregory CD. The Apoptosis Paradox in Cancer. Int J Mol Sci. 2022;23(3):1328. DOI: 10.3390/ijms23031328

130. Hilal B, Eldem A, Oz T, Pehlivan M, Pirim I. Boric Acid Affects Cell Proliferation, Apoptosis, and Oxidative Stress in ALL Cells. Biol Trace Elem Res. 2024;202(8):3614–3622. DOI: 10.1007/s12011-023-03958-9

131. Cengiz M, Cetik Yildiz S, Demir C, Şahin İK, Teksoy Ö, Ayhanci A. Hepato-preventive and anti-apoptotic role of boric acid against liver injury induced by cyclophosphamide. J Trace Elem Med Biol. 2019;53:1–7. DOI: 10.1016/j.jtemb.2019.01.013

132. Leśnikowski ZJ. Recent developments with boron as a platform for novel drug design. Expert Opin Drug Discov. 2016;11(6):569–578. DOI: 10.1080/17460441.2016.1174687

133. Ali F, S Hosmane N, Zhu Y. Boron Chemistry for Medical Applications. Molecules. 2020;25(4):828. DOI: 10.3390/molecules25040828

134. Malouff TD, Seneviratne DS, Ebner DK, Stross WC, Waddle MR, Trifiletti DM, Krishnan S. Boron Neutron Capture Therapy: A Review of Clinical Applications. Front Oncol. 2021;11:601820. DOI: 10.3389/fonc.2021.601820

135. Nedunchezhian K, Aswath N, Thiruppathy M, Thirugnanamurthy S. Boron Neutron Capture Therapy - A Literature Review. J Clin Diagn Res. 2016;10(12):ZE01–ZE04. DOI: 10.7860/JCDR/2016/19890.9024

136. Barth RF, Soloway AH, Fairchild RG, Brugger RM. Boron neutron capture therapy for cancer. Realities and prospects. Cancer. 1992;70(12):2995–3007. DOI: 10.1002/1097-0142(19921215)70:12<2995::aid-cncr2820701243>3.0.co;2-#

137. Sauerwein WAG, Sancey L, Hey-Hawkins E, Kellert M, Panza L, Imperio D, Balcerzyk M, Rizzo G, Scalco E, Herrmann K, Mauri P, De Palma A, Wittig A. Theranostics in Boron Neutron Capture Therapy. Life (Basel). 2021;11(4):330. DOI: 10.3390/life11040330

138. Barth RF, Zhang Z, Liu T. A realistic appraisal of boron neutron capture therapy as a cancer treatment modality. Cancer Commun (Lond). 2018;38(1):36. DOI: 10.1186/s40880-018-0280-5

139. Miyatake SI, Kawabata S, Hiramatsu R, Kuroiwa T, Suzuki M, Ono K. Boron Neutron Capture Therapy of Malignant Gliomas. Prog Neurol Surg. 2018;32:48–56. DOI: 10.1159/000469679

140. Yanagie H, Higashi S, Seguchi K, Ikushima I, Fujihara M, Nonaka Y, Oyama K, Maruyama S, Hatae R, Suzuki M, Masunaga S, Kinashi T, Sakurai Y, Tanaka H, Kondo N, Narabayashi M, Kajiyama T, Maruhashi A, Ono K, Nakajima J, Ono M, Takahashi H, Eriguchi M. Pilot clinical study of boron neutron capture therapy for recurrent hepatic cancer involving the intra-arterial injection of a (10)BSH-containing WOW emulsion. Appl Radiat Isot. 2014;88:32–37. DOI: 10.1016/j.apradiso.2014.01.014

141. Koivunoro H, Kankaanranta L, Seppälä T, Haapaniemi A, Mäkitie A, Joensuu H. Boron neutron capture therapy for locally recurrent head and neck squamous cell carcinoma: An analysis of dose response and survival. Radiother Oncol. 2019;137:153–158. DOI: 10.1016/j.radonc.2019.04.033

142. Cammarata FP, Torrisi F, Vicario N, Bravatà V, Stefano A, Salvatorelli L, D'Aprile S, Giustetto P, Forte GI, Minafra L, Calvaruso M, Richiusa S, Cirrone GAP, Petringa G, Broggi G, Cosentino S, Scopelliti F, Magro G, Porro D, Libra M, Ippolito M, Russo G, Parenti R, Cuttone G. Proton boron capture therapy (PBCT) induces cell death and mitophagy in a heterotopic glioblastoma model. Commun Biol. 2023;6(1):388. DOI: 10.1038/s42003-023-04770-w

143. Cirrone GAP, Manti L, Margarone D, Petringa G, Giuffrida L, Minopoli A, Picciotto A, Russo G, Cammarata F, Pisciotta P, Perozziello FM, Romano F, Marchese V, Milluzzo G, Scuderi V, Cuttone G, Korn G. First experimental proof of Proton Boron Capture Therapy (PBCT) to enhance protontherapy effectiveness. Sci Rep. 2018;8(1):1141. DOI: 10.1038/s41598-018-19258-5

144. Tran NH, Shtam T, Marchenko YY, Konevega AL, Lebedev D. Current State and Prospectives for Proton Boron Capture Therapy. Biomedicines. 2023;11(6):1727. DOI: 10.3390/biomedicines11061727

145. Bláha P, Feoli C, Agosteo S, Calvaruso M, Cammarata FP, Catalano R, Ciocca M, Cirrone GAP, Conte V, Cuttone G, Facoetti A, Forte GI, Giuffrida L, Magro G, Margarone D, Minafra L, Petringa G, Pucci G, Ricciardi V, Rosa E, Russo G, Manti L. The Proton-Boron Reaction Increases the Radiobiological Effectiveness of Clinical Low- and High-Energy Proton Beams: Novel Experimental Evidence and Perspectives. Front Oncol. 2021;11:682647. DOI: 10.3389/fonc.2021.682647

146. Ricciardi V, Bláha P, Buompane R, Crescente G, Cuttone G, Gialanella L, Michaličková K, Pacifico S, Porzio G, Manti L. A New Low-Energy Proton Irradiation Facility to Unveil the Mechanistic Basis of the Proton-Boron Capture Therapy Approach. Applied Sciences. 2021;11(24):11986. DOI: 10.3390/app112411986

147. Jelínek Michaelidesová A, Kundrát P, Zahradníček O, Danilová I, Pachnerová Brabcová K, Vachelová J, Vilimovský J, David M, Vondráček V, Davídková M. First independent validation of the proton-boron capture therapy concept. Sci Rep. 2024;14(1):19264. DOI: 10.1038/s41598-024-69370-y

148. Samoilov AV, Ivakin VA, Rumyantseva TA, Galanin NE. Synthesis and Photophysical Properties of a Binuclear Symmetrical Analog of BODIPY with Unconjugated Fluorophores. Russ J Gen Chem. 2024;94:2824–2832. DOI: 10.1134/S1070363224110021

149. . Spector V, Abramchuk DS, Bykusov VV, Zharova AO, Egorova ES, Voskresenskaya AS, Olovyanishnikov AR, Kuzmichev IA, Bubley AA, Antipin RL, Beloglazkina EK, Krasnovskaya OO. BODIPY: synthesis, modification, and applications in sensing and biomedicine. Russ Chem Rev. 2024;93(10):RCR5136. DOI: 10.59761/RCR5136

150. Aleksakhina EL, Ivanova AS, Pakhrova OA, Tomilova IK, Usoltsev SD, Marfin YuS. BODIPY Fluorophores for Evaluating Coagulation Hemostasis Kinetics in Physiological and Pathological States. Russ J Gen Chem. 2024;94:1855–1860. DOI: 10.1134/S1070363224070296

151. Franke JM, Raliski BK, Boggess SC, Natesan DV, Koretsky ET, Zhang P, Kulkarni RU, Deal PE, Miller EW. BODIPY Fluorophores for Membrane Potential Imaging. J Am Chem Soc. 2019;141(32):12824–12831. DOI: 10.1021/jacs.9b05912

152. Antina E, Bumagina N, Marfin Y, Guseva G, Nikitina L, Sbytov D, Telegin F. BODIPY Conjugates as Functional Compounds for Medical Diagnostics and Treatment. Molecules. 2022;27(4):1396. DOI: 10.3390/molecules27041396

153. Loudet A, Burgess K. BODIPY dyes and their derivatives: syntheses and spectroscopic properties. Chem Rev. 2007;107(11):4891–4932. DOI: 10.1021/cr078381n

154. Jang Y, Kim TI, Kim H, Choi Y, Kim Y. Photoactivatable BODIPY Platform: Light-Triggered Anticancer Drug Release and Fluorescence Monitoring. ACS Appl Bio Mater. 2019;2(6):2567–2572. DOI: 10.1021/acsabm.9b00259

155. Wang R, Dong K, Xu G, Shi B, Zhu T, Shi P, Guo Z, Zhu WH, Zhao C. Activatable near-infrared emission-guided on-demand administration of photodynamic anticancer therapy with a theranostic nanoprobe. Chem Sci. 2019;10(9):2785–2790. DOI: 10.1039/c8sc04854a

156. Mao Z, Kim JH, Lee J, Xiong H, Zhang F, Kim JS. Engineering of BODIPY-based theranostics for cancer therapy. Coordination Chemistry Reviews. 2023;476:214908. DOI: 10.1016/j.ccr.2022.214908

157. Zhang JB, Tong J, Sun DY, Fu JT, Li DJ, Wang P. Targeting ferroptosis in cardio-metabolic-diseases: Mechanisms and therapeutic prospects. Med Res Rev. 2023;43(3):683–712. DOI: 10.1002/med.21934

158. Saraev DD, Pratt DA. Reactions of lipid hydroperoxides and how they may contribute to ferroptosis sensitivity. Curr Opin Chem Biol. 2024;81:102478. DOI: 10.1016/j.cbpa.2024.102478

159. Jiang X, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol. 2021;22(4):266–282. DOI: 10.1038/s41580-020-00324-8

160. Feng S, Tang D, Wang Y, Li X, Bao H, Tang C, Dong X, Li X, Yang Q, Yan Y, Yin Z, Shang T, Zheng K, Huang X, Wei Z, Wang K, Qi S. The mechanism of ferroptosis and its related diseases. Mol Biomed. 2023;4(1):33. DOI: 10.1186/s43556-023-00142-2

161. Maru D, Hothi A, Bagariya C, Kumar A. Targeting Ferroptosis Pathways: A Novel Strategy for Cancer Therapy. Curr Cancer Drug Targets. 2022;22(3):234–244. DOI: 10.2174/1568009622666220211122745

162. Qi X, Wan Z, Jiang B, Ouyang Y, Feng W, Zhu H, Tan Y, He R, Xie L, Li Y. Inducing ferroptosis has the potential to overcome therapy resistance in breast cancer. Front Immunol. 2022;13:1038225. DOI: 10.3389/fimmu.2022.1038225

163. Kar F, Hacioğlu C, Kaçar S. The dual role of boron in vitro neurotoxication of glioblastoma cells via SEMA3F/NRP2 and ferroptosis signaling pathways. Environ Toxicol. 2023;38(1):70–77. DOI: 10.1002/tox.23662

164. Li X, Wang X, Zhang J, Hanagata N, Wang X, Weng Q, Ito A, Bando Y, Golberg D. Hollow boron nitride nanospheres as boron reservoir for prostate cancer treatment. Nat Commun. 2017;8:13936. DOI: 10.1038/ncomms13936

165. Corti A, Dominici S, Piaggi S, Pompella A. Enhancement of ferroptosis by boric acid and its potential use as chemosensitizer in anticancer chemotherapy. Biofactors. 2023;49(2):405–414. DOI: 10.1002/biof.1919

166. Hammond Quarcoo F, Appiah Kusi G, Fouemina CNJ. Nanoparticle-induced Ferroptosis for Cancer Therapy. International Journal of Biological, Physical and Chemical Studies. 2022;4(2):30–42. DOI: 10.32996/ijbpcs.2022.4.2.4

167. Arfin S, Jha NK, Jha SK, Kesari KK, Ruokolainen J, Roychoudhury S, Rathi B, Kumar D. Oxidative Stress in Cancer Cell Metabolism. Antioxidants (Basel). 2021;10(5):642. DOI: 10.3390/antiox10050642

168. Hunt CD, Idso JP. Dietary boron as a physiological regulator of the normal inflammatory response: A review and current research progress. J Trace Elem Exp Med. 1999;12:221–233. DOI: 10.1002/(SICI)1520-670X(1999)12:3<221::AID-JTRA6>3.0.CO;2-X

169. Paties Montagner G, Dominici S, Piaggi S, Pompella A, Corti A. Redox Mechanisms Underlying the Cytostatic Effects of Boric Acid on Cancer Cells—An Issue Still Open. Antioxidants. 2023;12(6):1302. DOI: 10.3390/antiox12061302

170. Ke K, Li L, Lu C, Zhu Q, Wang Y, Mou Y, Wang H, Jin W. The crosstalk effect between ferrous and other ions metabolism in ferroptosis for therapy of cancer. Front Oncol. 2022;12:916082. DOI: 10.3389/fonc.2022.916082

171. Forman HJ, Zhang H. Targeting oxidative stress in disease: promise and limitations of antioxidant therapy. Nat Rev Drug Discov. 2021;20(9):689–709. DOI: 10.1038/s41573-021-00233-1. Erratum in: Nat Rev Drug Discov. 2021;20(8):652. DOI: 10.1038/s41573-021-00267-5

172. Ageeva NM, Markosov VA, Muzychenko GF, Bessonov VV, Khanferyan RA. Antioxidant and antiradical properties of red grape wines. Problems of Nutrition. 2015;84(2):63–67. EDN: XCEXGB

173. Liu Z, Ren Z, Zhang J, Chuang CC, Kandaswamy E, Zhou T, Zuo L. Role of ROS and Nutritional Antioxidants in Human Diseases. Front Physiol. 2018;9:477. DOI: 10.3389/fphys.2018.00477

174. Yunusoğlu O, Ayaz İ, Dovankaya EH. Pharmacological, medicinal and biological properties of flavonoids: A comprehensive review. Journal of Research in Pharmacy. 2025;29(2):561–584. DOI: 10.12991/jrespharm.1661054

175. Misrani A, Tabassum S, Yang L. Mitochondrial Dysfunction and Oxidative Stress in Alzheimer's Disease. Front Aging Neurosci. 2021;13:617588. DOI: 10.3389/fnagi.2021.617588

176. Riaz M, Yan L, Wu X, Hussain S, Aziz O, Wang Y, Imran M, Jiang C. Boron alleviates the aluminum toxicity in trifoliate orange by regulating antioxidant defense system and reducing root cell injury. J Environ Manage. 2018;208:149–158. DOI: 10.1016/j.jenvman.2017.12.008

177. Jackson DG, Cardwell LA, Oussedik E, Feldman SR. Utility of boron in dermatology. J Dermatolog Treat. 2020;31(1):2–12. DOI: 10.1080/09546634.2017.1363850

178. Turkez H, Yıldırım S, Sahin E, Arslan ME, Emsen B, Tozlu OO, Alak G, Ucar A, Tatar A, Hacimuftuoglu A, Keles MS, Geyikoglu F, Atamanalp M, Saruhan F, Mardinoglu A. Boron Compounds Exhibit Protective Effects against Aluminum-Induced Neurotoxicity and Genotoxicity: In Vitro and In Vivo Study. Toxics. 2022;10(8):428. DOI: 10.3390/toxics10080428

179. Arslan-Acaroz D, Bayşu-Sozbilir N. Ameliorative effect of boric acid against formaldehyde-induced oxidative stress in A549 cell lines. Environ Sci Pollut Res Int. 2020;27(4):4067–4074. DOI: 10.1007/s11356-019-06986-y

180. Sogut I, Oglakci A, Kartkaya K, Ol KK, Sogut MS, Kanbak G, Inal ME. Effect of boric acid on oxidative stress in rats with fetal alcohol syndrome. Exp Ther Med. 2015;9(3):1023–1027. DOI: 10.3892/etm.2014.2164

181. Gündüz MK, Bolat M, Kaymak G, Berikten D, Köse DA. Therapeutic Effects of Newly Synthesized Boron Compounds (BGM and BGD) on Hepatocellular Carcinoma. Biol Trace Elem Res. 2022;200(1):134–146. DOI: 10.1007/s12011-021-02647-9

182. Ince S, Kucukkurt I, Demirel HH, Acaroz DA, Akbel E, Cigerci IH. Protective effects of boron on cyclophosphamide induced lipid peroxidation and genotoxicity in rats. Chemosphere. 2014;108:197–204. DOI: 10.1016/j.chemosphere.2014.01.038

183. Kucukkurt I, Ince S, Demirel HH, Turkmen R, Akbel E, Celik Y. The Effects of Boron on Arsenic-Induced Lipid Peroxidation and Antioxidant Status in Male and Female Rats. J Biochem Mol Toxicol. 2015;29(12):564–571. DOI: 10.1002/jbt.21729

184. Kızılay Z, Erken HA, Çetin NK, Aktaş S, Abas Bİ, Yılmaz A. Boric acid reduces axonal and myelin damage in experimental sciatic nerve injury. Neural Regen Res. 2016;11(10):1660–1665. DOI: 10.4103/1673-5374.193247

185. Frei A, Verderosa AD, Elliott AG, Zuegg J, Blaskovich MAT. Metals to combat antimicrobial resistance. Nat Rev Chem. 2023;7(3):202–224. DOI: 10.1038/s41570-023-00463-4

186. Hu ZX, Zhang J, Zhang T, Tian CY, An Q, Yi P, Yuan CM, Zhang ZK, Zhao LH, Hao XJ. Aloperine-Type Alkaloids with Antiviral and Antifungal Activities from the Seeds of Sophora alopecuroides L. J Agric Food Chem. 2024;72(14):8225–8236. DOI: 10.1021/acs.jafc.4c00992

187. Sayin Z, Ucan US, Sakmanoglu A. Antibacterial and Antibiofilm Effects of Boron on Different Bacteria. Biol Trace Elem Res. 2016;173(1):241–246. DOI: 10.1007/s12011-016-0637-z

188. Celebı D, Celebı O, Aydin E, Baser S, Güler MC, Yildirim S, Taghizadehghalehjoughi A. Boron Compound-Based Treatments Against Multidrug-Resistant Bacterial Infections in Lung Cancer In Vitro Model. Biol Trace Elem Res. 2024;202(1):145–160. DOI: 10.1007/s12011-023-03912-9

189. Uzun Yaylacı E. Antibacterial Effects of Boric Acid Against Aquatic Pathogens. Journal of Anatolian Environmental and Animal Sciences. 2021;6(2):240–244. DOI: 10.35229/jaes.881144

190. Hernandez-Patlan D, Solis-Cruz B, Latorre JD, Maguey-Gonzalez JA, Castellanos-Huerta I, Beyssac E, Garrait G, Vázquez-Durán A, López-Arellano R, Méndez-Albores A, Hargis BM, Tellez-Isaias G. Evaluation of the Antimicrobial Activity of a Formulation Containing Ascorbic Acid and Eudragit FS 30D Microparticles for the Controlled Release of a Curcumin-Boric Acid Solid Dispersion in Turkey Poults Infected with Salmonella enteritidis: A Therapeutic Model. Int J Mol Sci. 2023;24(22):16186. DOI: 10.3390/ijms242216186

191. Brittingham A, Wilson WA. The antimicrobial effect of boric acid on Trichomonas vaginalis. Sex Transm Dis. 2014;41(12):718–722. DOI: 10.1097/OLQ.0000000000000203

192. Trippier PC, McGuigan C. Boronic acids in medicinal chemistry: anticancer, antibacterial and antiviral applications. Med Chem Commun. 2010;1:183–198. DOI: 10.1039/C0MD00119H

193. Schelenz S. Management of candidiasis in the intensive care unit. J Antimicrob Chemother. 2008;61 Suppl 1:i31–4. DOI: 10.1093/jac/dkm430

194. Talapko J, Juzbašić M, Matijević T, Pustijanac E, Bekić S, Kotris I, Škrlec I. Candida albicans-The Virulence Factors and Clinical Manifestations of Infection. J Fungi (Basel). 2021;7(2):79. DOI: 10.3390/jof7020079

195. Çelikezen FÇ, İ. Şahin H. Investigation of Antimicrobial and Antifungal Effects of Some Boron Compounds. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi. 2023;12(3):591–595. DOI: 10.17798/bitlisfen.1197472

196. Van Slyke KK, Michel VP, Rein MF. Treatment of vulvovaginal candidiasis with boric acid powder. Am J Obstet Gynecol. 1981;141(2):145–148. DOI: 10.1016/s0002-9378(16)32581-9

197. De Seta F, Schmidt M, Vu B, Essmann M, Larsen B. Antifungal mechanisms supporting boric acid therapy of Candida vaginitis. J Antimicrob Chemother. 2009;63(2):325–336. DOI: 10.1093/jac/dkn486

198. Pointer BR, Boyer MP, Schmidt M. Boric acid destabilizes the hyphal cytoskeleton and inhibits invasive growth of Candida albicans. Yeast. 2015;32(4):389–398. DOI: 10.1002/yea.3066

199. Larsen B, Petrovic M, De Seta F. Boric Acid and Commercial Organoboron Products as Inhibitors of Drug-Resistant Candida albicans. Mycopathologia. 2018;183(2):349–357. DOI: 10.1007/s11046-017-0209-6

200. Orak F, Nazik H, Yalcinkaya KT, Gundes A, Doganer A, Nazik S, Mulayim MK, Ozturk P. Antifungal efficacy of pure boron on yeast and mold isolates causing superficial mycosis. J Pak Med Assoc. 2022;72(7):1330–1334. DOI: 10.47391/JPMA.2219

201. Nemyatykh OD, Maistrenko MA, Demchenko DD, Narkevich IA, Okovityi SV, Timchenko VN. Principles of Rational COVID-19 Therapy in Pediatrics. J Clin Med. 2023;12(14):4731. DOI: 10.3390/jcm12144731

202. Stebbing J, Phelan A, Griffin I, Tucker C, Oechsle O, Smith D, Richardson P. COVID-19: combining antiviral and anti-inflammatory treatments. Lancet Infect Dis. 2020;20(4):400–402. DOI: 10.1016/S1473-3099(20)30132-8

203. Sarkar C, Mondal M, Torequl Islam M, Martorell M, Docea AO, Maroyi A, Sharifi-Rad J, Calina D. Potential Therapeutic Options for COVID-19: Current Status, Challenges, and Future Perspectives. Front Pharmacol. 2020;11:572870. DOI: 10.3389/fphar.2020.572870

204. Akbari N, Ostadrahimi A, Tutunchi H, Pourmoradian S, Farrin N, Najafipour F, Soleimanzadeh H, Kafil B, Mobasseri M. Possible therapeutic effects of boron citrate and oleoylethanolamide supplementation in patients with COVID-19: A pilot randomized, double-blind, clinical trial. J Trace Elem Med Biol. 2022;71:126945. DOI: 10.1016/j.jtemb.2022.126945

205. Wanninger S, Lorenz V, Subhanb A, Edelmann FT. Metal complexes of curcumin – synthetic strategies, structures and medicinal applications. Chem Soc Rev. 2015;44:4986–5002. DOI: 10.1039/C5CS00088B

206. Bellamy LJ, Spicer GS, Strickland JDH. Compounds of curcumin and boric acid. Part III. Infra-red studies of rosocyanin and allied compounds. J Chem. Soc. 1952:4653–4656. DOI: 10.1039/JR9520004653

207. Sui Z, Salto R, Li J, Craik C, Ortiz de Montellano PR. Inhibition of the HIV-1 and HIV-2 proteases by curcumin and curcumin boron complexes. Bioorg Med Chem. 1993;1(6):415–422. DOI: 10.1016/s0968-0896(00)82152-5

208. Scorei IR, Biţă A, Mogoşanu GD. Letter to the Editor: Boron enhances the antiviral activity of the curcumin against SARS-CoV-2. Rom J Morphol Embryol. 2020;61(3):967–970. DOI: 10.47162/RJME.61.3.39

209. Vega Valdez IR, Santiago-Quintana JM, Rosalez M, Farfan E, Soriano-Ursua MA. Theoretical Evaluation of Bortezomib and Other Boron-Containing Compounds as Inhibitors of SARS-CoV-2 Main Protease. ChemRxiv. 2020. DOI: 10.26434/chemrxiv.12047346.v1

210. Cetiner E, Sayin K, Tuzun B, Ataseven H. Could boron-containing compounds (BCCs) be effective against SARS-CoV-2 as anti-viral agent? Bratisl Lek Listy. 2021;122(4):263–269. DOI: 10.4149/BLL_2021_044

211. Momčilović S, Cantacessi C, Arsić-Arsenijević V, Otranto D, Tasić-Otašević S. Rapid diagnosis of parasitic diseases: current scenario and future needs. Clin Microbiol Infect. 2019;25(3):290–309. DOI: 10.1016/j.cmi.2018.04.028

212. Thorley N, Ross J. Intravaginal boric acid: is it an alternative therapeutic option for vaginal trichomoniasis? Sex Transm Infect. 2018;94(8):574–577. DOI: 10.1136/sextrans-2017-053343

213. Ugwu DI, Eze FU, Ezeorah CJ, Rhyman L, Ramasami P, Tania G, Eze CC, Uzoewulu CP, Ogboo BC, Okpareke OC. Synthesis, structure, hirshfeld surface analysis, non-covalent interaction, and in silico studies of 4-hydroxy-1-[(4-nitrophenyl)sulphonyl]pyrrolidine-2-carboxyllic acid. Research Square. 2022. DOI: 10.21203/rs.3.rs-2217367/v1

214. Mahmoud A, Zerhouni E. Neglected tropical diseases: moving beyond mass drug treatment to understanding the science. Health Aff (Millwood). 2009;28(6):1726–1733. DOI: 10.1377/hlthaff.28.6.1726

215. Croft SL. Neglected diseases: progress in drug development. Curr Opin Investig Drugs. 2007;8(2):103–104.

216. Renslo AR, McKerrow JH. Drug discovery and development for neglected parasitic diseases. Nat Chem Biol. 2006;2(12):701–710. DOI: 10.1038/nchembio837

217. Jacobs RT, Plattner JJ, Keenan M. Boron-based drugs as antiprotozoals. Curr Opin Infect Dis. 2011;24(6):586–592. DOI: 10.1097/QCO.0b013e32834c630e

218. Lindenthal C, Weich N, Chia YS, Heussler V, Klinkert MQ. The proteasome inhibitor MLN-273 blocks exoerythrocytic and erythrocytic development of Plasmodium parasites. Parasitology. 2005;131(Pt 1):37–44. DOI: 10.1017/s003118200500747x

219. Reynolds JM, El Bissati K, Brandenburg J, Günzl A, Mamoun CB. Antimalarial activity of the anticancer and proteasome inhibitor bortezomib and its analog ZL3B. BMC Clin Pharmacol. 2007;7:13. DOI: 10.1186/1472-6904-7-13

220. Sørensen TIA, Martinez AR, Jørgensen TSH. Epidemiology of Obesity. Handb Exp Pharmacol. 2022;274:3–27. DOI: 10.1007/164_2022_581

221. Yunusoglu O, Türkmen Ö, Berkoz M, Yıldırım M, Yalın S. In Vitro Anti-Obesity Effect of Aloe vera Extract Through Transcription Factors and LipolysisAssociated Genes. East J Med. 2022;27(4):519–528. DOI: 10.5505/ejm.2022.13285

222. Doğan A, Demirci S, Apdik H, Bayrak OF, Gulluoglu S, Tuysuz EC, Gusev O, Rizvanov AA, Nikerel E, Şahin F. A new hope for obesity management: Boron inhibits adipogenesis in progenitor cells through the Wnt/β-catenin pathway. Metabolism. 2017;69:130–142. DOI: 10.1016/j.metabol.2017.01.021

223. Aysan E, Sahin F, Telci D, Yalvac ME, Emre SH, Karaca C, Muslumanoglu M. Body weight reducing effect of oral boric acid intake. Int J Med Sci. 2011;8(8):653–658. DOI: 10.7150/ijms.8.653

224. Farrin N, Rezazadeh L, Pourmoradian S, Attari VE, Tutunchi H, Zarezadeh M, Najafipour F, Ostadrahimi A. Boron compound administration; A novel agent in weight management: A systematic review and meta- analysis of animal studies. J Trace Elem Med Biol. 2022;72:126969. DOI: 10.1016/j.jtemb.2022.126969

225. Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, Colagiuri S, Guariguata L, Motala AA, Ogurtsova K, Shaw JE, Bright D, Williams R; IDF Diabetes Atlas Committee. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract. 2019;157:107843. DOI: 10.1016/j.diabres.2019.107843

226. Weyer C, Bogardus C, Mott DM, Pratley RE. The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus. J Clin Invest. 1999;104(6):787–794. DOI: 10.1172/JCI7231

227. Cakir S, Eren M, Senturk M, Sarica ZS. The Effect of Boron on Some Biochemical Parameters in Experimental Diabetic Rats. Biol Trace Elem Res. 2018;184(1):165–172. DOI: 10.1007/s12011-017-1182-0

228. Çakir S. Effect of Boric Acid on Metabolic Peptides and Some Biochemical Parameters in Experimental Diabetic Rats. Biol Trace Elem Res. 2024;202(3):1001–1008. DOI: 10.1007/s12011-023-03910-x. Epub 2023 Oct 23. Erratum in: Biol Trace Elem Res. 2024;202(8):3868–3869. DOI: 10.1007/s12011-023-03944-1

229. Jin E, Li S, Ren M, Hu Q, Gu Y, Li K. Boron Affects Immune Function Through Modulation of Splenic T Lymphocyte Subsets, Cytokine Secretion, and Lymphocyte Proliferation and Apoptosis in Rats. Biol Trace Elem Res. 2017;178(2):261–275. DOI: 10.1007/s12011-017-0932-3

230. Romero-Aguilar KS, Arciniega-Martínez IM, Farfán-García ED, Campos-Rodríguez R, Reséndiz-Albor AA, Soriano-Ursúa MA. Effects of boron-containing compounds on immune responses: review and patenting trends. Expert Opin Ther Pat. 2019;29(5):339–351. DOI: 10.1080/13543776.2019.1612368

231. DeFrancesco H, Dudley J, Coca A. Boron Chemistry: An Overview. ACS Symposium Series. 2016;1236:1–25. DOI: 10.1021/bk-2016-1236.ch001

232. Abdelnour SA, Abd El-Hack ME, Swelum AA, Perillo A, Losacco C. The vital roles of boron in animal health and production: A comprehensive review. J Trace Elem Med Biol. 2018;50:296–304. DOI: 10.1016/j.jtemb.2018.07.018

233. Bhasker TV, Gowda NK, Mondal S, Krishnamoorthy P, Pal DT, Mor A, Bhat SK, Pattanaik AK. Boron influences immune and antioxidant responses by modulating hepatic superoxide dismutase activity under calcium deficit abiotic stress in Wistar rats. J Trace Elem Med Biol. 2016;36:73–79. DOI: 10.1016/j.jtemb.2016.04.007

234. Routray I, Ali S. Boron Induces Lymphocyte Proliferation and Modulates the Priming Effects of Lipopolysaccharide on Macrophages. PLoS One. 2016;11(3):e0150607. DOI: 10.1371/journal.pone.0150607

235. Asadi R, Raouf Sarshoori J, Ghorbani M, Mofid M. Evaluation of the Effect of Boron on Histopathological Changes of Atherosclerotic Plaque in Aortic Arch and Lipid Profiles in Hyperlipidemic New Zealand Male Rabbits. J Adv Med Biomed Res. 2023;31(145):197–203. DOI: 10.30699/jambs.31.145.197

236. Yang HY, Liu ML, Luo P, Yao XS, Zhou H. Network pharmacology provides a systematic approach to understanding the treatment of ischemic heart diseases with traditional Chinese medicine. Phytomedicine. 2022;104:154268. DOI: 10.1016/j.phymed.2022.154268

237. Bittencourt MS, Cerci RJ. Statin effects on atherosclerotic plaques: regression or healing? BMC Med. 2015;13:260. DOI: 10.1186/s12916-015-0499-9

238. Toledo-Ibelles P, Mas-Oliva J. Antioxidants in the Fight Against Atherosclerosis: Is This a Dead End? Curr Atheroscler Rep. 2018;20(7):36. DOI: 10.1007/s11883-018-0737-7

239. Donoiu I, Militaru C, Obleagă O, Hunter JM, Neamţu J, Biţă A, Scorei IR, Rogoveanu OC. Effects of boron-containing compounds on cardiovascular disease risk factors - A review. J Trace Elem Med Biol. 2018;50:47–56. DOI: 10.1016/j.jtemb.2018.06.003

240. Coban FK, Ince S, Kucukkurt I, Demirel HH, Hazman O. Boron attenuates malathion-induced oxidative stress and acetylcholinesterase inhibition in rats. Drug Chem Toxicol. 2015;38(4):391–399. DOI: 10.3109/01480545.2014.974109

241. Coban FK, Liman R, Cigerci IH, Ince S, Hazman OBozkurt MF. The antioxidant effect of boron on oxidative stress and DNA damage in diabetic rats. J Fresenius Environ Bull. 2015;24(11):4059–4066.

242. Zafar H, Ali S. Boron inhibits the proliferating cell nuclear antigen index, molybdenum containing proteins and ameliorates oxidative stress in hepatocellular carcinoma. Arch Biochem Biophys. 2013;529(2):66–74. DOI: 10.1016/j.abb.2012.11.008

243. Sen CK. Human Wound and Its Burden: Updated 2020 Compendium of Estimates. Adv Wound Care (New Rochelle). 2021;10(5):281–292. DOI: 10.1089/wound.2021.0026

244. Frykberg RG, Banks J. Challenges in the Treatment of Chronic Wounds. Adv Wound Care (New Rochelle). 2015;4(9):560–582. DOI: 10.1089/wound.2015.0635

245. Tang N, Zhang R, Zheng Y, Wang J, Khatib M, Jiang X, Zhou C, Omar R, Saliba W, Wu W, Yuan M, Cui D, Haick H. Highly Efficient Self-Healing Multifunctional Dressing with Antibacterial Activity for Sutureless Wound Closure and Infected Wound Monitoring. Adv Mater. 2022;34(3):e2106842. DOI: 10.1002/adma.202106842

246. Şahin F, Pirouzpanah MB, Farshbaf-Khalili A, Ayşan E, Doğan A, Demirci S, Ostadrahimi A, Mobasseri M. The effect of the boron-based gel on the treatment of diabetic foot ulcers: A prospective, randomized controlled trial. J Trace Elem Med Biol. 2023;79:127261. DOI: 10.1016/j.jtemb.2023.127261

247. Doğan A, Demirci S, Cağlayan AB, Kılıç E, Günal MY, Uslu U, Cumbul A, Sahin F. Sodium pentaborate pentahydrate and pluronic containing hydrogel increases cutaneous wound healing in vitro and in vivo. Biol Trace Elem Res. 2014;162(1-3):72–79. DOI: 10.1007/s12011-014-0104-7

248. Benderdour M, Van Bui T, Hess K, Dicko A, Belleville F, Dousset B. Effects of boron derivatives on extracellular matrix formation. J Trace Elem Med Biol. 2000;14(3):168–173. DOI: 10.1016/S0946-672X(00)80006-1

249. Roy N, Saha N, Kitano T, Saha P. Development and Characterization of Novel Medicated Hydrogels for Wound Dressing. Soft Materials. 2010;8(2):130–148. DOI: 10.1080/15394451003756282

250. Demirci S, Doğan A, Aydın S, Dülger EÇ, Şahin F. Boron promotes streptozotocin-induced diabetic wound healing: roles in cell proliferation and migration, growth factor expression, and inflammation. Mol Cell Biochem. 2016;417(1-2):119–133. DOI: 10.1007/s11010-016-2719-9

251. Shimikore SS, Pawar Gaurav B. A Randomized Controlled Trial to Compare Efficacy of Collagen Granule-Based Dressing versus Conventional Dressing in the Management of Diabetic Foot Ulcers. Archives of Medicine and Health Sciences. 2018;6(1):28–31. DOI: 10.4103/amhs.amhs_30_17

252. Kırbaş OK, Bozkurt BT, Taşlı PN, Hayal TB, Özkan İ, Bülbül B, Beyaz S, Şahin F. Effective Scarless Wound Healing Mediated by Erbium Borate Nanoparticles. Biol Trace Elem Res. 2021;199(9):3262–3271. DOI: 10.1007/s12011-020-02458-4

253. Kurtoğlu AH, Karataş A. Current approaches to wound therapy: modern wound dressings. J Fac Pharm Ankara. 2009;38(3):211–232. DOI: 10.1501/Eczfak_0000000562

254. Chupakhin ON, Khonina TG, Kungurov NV, Zilberberg NV, Evstigneeva NP, Kokhan MM, Polishchuk AI, Shadrina EV, Larchenko EYu, Larionov LP, Karabanalov MS. Silicon–boron-containing glycerohydrogel having wound healing, regenerative, and antimicrobial activity. Russ Chem Bull. 2017;66:558–563. DOI: 10.1007/s11172-017-1771-2

255. Nzietchueng RM, Dousset B, Franck P, Benderdour M, Nabet P, Hess K. Mechanisms implicated in the effects of boron on wound healing. J Trace Elem Med Biol. 2002;16(4):239–244. DOI: 10.1016/S0946-672X(02)80051-7

256. Sedighi-Pirsaraei N, Tamimi A, Sadeghi Khamaneh F, Dadras-Jeddi S, Javaheri N. Boron in wound healing: a comprehensive investigation of its diverse mechanisms. Front Bioeng Biotechnol. 2024;12:1475584. DOI: 10.3389/fbioe.2024.1475584

257. Behera SS, Pramanik K, Nayak MK. Recent Advancement in the Treatment of Cardiovascular Diseases: Conventional Therapy to Nanotechnology. Curr Pharm Des. 2015;21(30):4479–4497. DOI: 10.2174/1381612821666150817104635

258. Miljkovic D, Scorei RI, Cimpoiaşu VM, Scorei ID. Calcium fructoborate: plant-based dietary boron for human nutrition. J Diet Suppl. 2009;6(3):211–226. DOI: 10.1080/19390210903070772

259. Shrivastava AK, Singh HV, Raizada A, Singh SK. C-reactive protein, inflammation and coronary heart disease. Egypt Heart J. 2015;94(2):89–97. DOI: 10.1016/j.ehj.2014.11.005

260. Nielsen FH. Historical and recent aspects of boron in human and animal health. J Boron. 2017;2(3):153–160.

261. Karimkhani H, Özkoç M, Shojaolsadati P, Uzuner K, Donmez DB, Kanbak G. Protective Effect of Boric Acid and Omega-3 on Myocardial Infarction in an Experimental Rat Model. Biol Trace Elem Res. 2021;199(7):2612–2620. DOI: 10.1007/s12011-020-02360-z

262. Bouchareb R, Katz M, Saadallah N, Sassi Y, Ali S, Lebeche D. Boron improves cardiac contractility and fibrotic remodeling following myocardial infarction injury. Sci Rep. 2020;10(1):17138. DOI: 10.1038/s41598-020-73864-w

263. Devarbhavi H, Asrani SK, Arab JP, Nartey YA, Pose E, Kamath PS. Global burden of liver disease: 2023 update. J Hepatol. 2023;79(2):516–537. DOI: 10.1016/j.jhep.2023.03.017

264. Berköz M, Aslan A, Yunusoğlu O, Krośniak M, Francik R. Hepatoprotective potentials of Usnea longissima Ach. and Xanthoparmelia somloensis (Gyelnik) Hale extracts in ethanol-induced liver injury. Drug Chem Toxicol. 2025;48(1):136–149. DOI: 10.1080/01480545.2024.2407867

265. Wang R, Kong J, Wang D, Lien LL, Lien EJ. A survey of Chinese herbal ingredients with liver protection activities. Chin Med. 2007;2:5. DOI: 10.1186/1749-8546-2-5

266. Kabu M, Uyarlar C, Żarczyńska K, Milewska W, Sobiech P. The role of boron in animal health. J Elem 2015;20(2):535–541. DOI: 10.5601/jelem.2014.19.3.706

267. Abdik H, Cumbul A, Hayal TB, Avşar Abdik E, Taşlı PN, Kırbaş OK, Baban D, Şahin F. Sodium Pentaborate Pentahydrate ameliorates lipid accumulation and pathological damage caused by high fat diet induced obesity in BALB/c mice. J Trace Elem Med Biol. 2021;66:126736. DOI: 10.1016/j.jtemb.2021

268. Şahin E, Orhan C, Erten F, Şahin F, Şahin N, Şahin K. The effect of different boron compounds on nutrient digestibility, intestinal nutrient transporters, and liver lipid metabolism. Turk J Med Sci. 2023;53(3):619–629. DOI: 10.55730/1300-0144.5624

269. Kucukkurt I, Ince S, Eryavuz A, Demirel HH, Arslan-Acaroz D, Zemheri-Navruz F, Durmus I. The effects of boron-supplemented diets on adipogenesis-related gene expressions, anti-inflammatory, and antioxidative response in high-fat fed rats. J Biochem Mol Toxicol. 2023;37(2):e23257. DOI: 10.1002/jbt.23257

270. Bhushan B, Apte U. Liver Regeneration after Acetaminophen Hepatotoxicity: Mechanisms and Therapeutic Opportunities. Am J Pathol. 2019;189(4):719–729. DOI: 10.1016/j.ajpath.2018.12.006

271. Çelik M, Aydın P. 4-hidroksifenilboronik asitin HEPG2 hücre hattında asetaminofen ile indüklenen karaciğer hücre hasarı üzerine etkisinin araştırılması. J Boron. 2022;7(3):507–513. DOI: 10.30728/boron.1079589

272. Olufunmilayo EO, Gerke-Duncan MB, Holsinger RMD. Oxidative Stress and Antioxidants in Neurodegenerative Disorders. Antioxidants (Basel). 2023;12(2):517. DOI: 10.3390/antiox12020517

273. Pizzorno L. Nothing Boring About Boron. Integr Med (Encinitas). 2015;14(4):35–48.

274. Nakmode DD, Day CM, Song Y, Garg S. The Management of Parkinson's Disease: An Overview of the Current Advancements in Drug Delivery Systems. Pharmaceutics. 2023;15(5):1503. DOI: 10.3390/pharmaceutics15051503

275. Yang P, Liu Y, Tong ZW, Huang QH, Xie XH, Mao SY, Ding JH, Lu M, Tan RX, Hu G. The marine-derived compound TAG alleviates Parkinson's disease by restoring RUBCN-mediated lipid metabolism homeostasis. Acta Pharmacol Sin. 2024;45(7):1366–1380. DOI: 10.1038/s41401-024-01259-y

276. Ozdemir HS, Yunusoglu O, Sagmanligil V, Yasar S, Colcimen N, Goceroglu R, Catalkaya E. Investigation of the pharmacological, behavioral, and biochemical effects of boron in parkinson-indicated rats: Effects of Boron on Rotenone-Induced Parkinson’s Disease. Cellular and Molecular Biology. 2022;68(8):13–21. DOI: 10.14715/cmb/2022.68.8.3

277. Küçükdoğru R, Türkez H, Arslan ME, Tozlu ÖÖ, Sönmez E, Mardinoğlu A, Cacciatore I, Di Stefano A. Neuroprotective effects of boron nitride nanoparticles in the experimental Parkinson's disease model against MPP+ induced apoptosis. Metab Brain Dis. 2020;35(6):947–957. DOI: 10.1007/s11011-020-00559-6

278. Yavuz E, Çevik G, Çevreli B, Serdaroğlu Kaşıkçı E. Effect of boric acid and quercetin combination on oxidative stress/ cognitive function in parkinson model. J Boron. 2023;8(3):85–91. DOI: 10.30728/boron.1215949

279. Revi M. Alzheimer's Disease Therapeutic Approaches. Adv Exp Med Biol. 2020;1195:105–116. DOI: 10.1007/978-3-030-32633-3_15

280. Shin JH. Dementia Epidemiology Fact Sheet 2022. Ann Rehabil Med. 2022;46(2):53–59. DOI: 10.5535/arm.22027

281. Murphy MP, LeVine H 3rd. Alzheimer's disease and the amyloid-beta peptide. J Alzheimers Dis. 2010;19(1):311–323. DOI: 10.3233/JAD-2010-1221

282. Paudel P, Seong SH, Zhou Y, Park HJ, Jung HA, Choi JS. Anti-Alzheimer's Disease Activity of Bromophenols from a Red Alga, Symphyocladia latiuscula (Harvey) Yamada. ACS Omega. 2019;4(7):12259–12270. DOI: 10.1021/acsomega.9b01557

283. Özdemir Ç, Arslan M, Küçük A, Yığman Z, Dursun AD. Therapeutic Efficacy of Boric Acid Treatment on Brain Tissue and Cognitive Functions in Rats with Experimental Alzheimer's Disease. Drug Des Devel Ther. 2023;17:1453–1462. DOI: 10.2147/DDDT.S405963

284. Colak S, Geyikoglu F, Keles ON, Türkez H, Topal A, Unal B. The neuroprotective role of boric acid on aluminum chloride-induced neurotoxicity. Toxicol Ind Health. 2011;27(8):700–710. DOI: 10.1177/0748233710395349

285. Lu CJ, Hu J, Wang Z, Xie S, Pan T, Huang L, Li X. Discovery of boron-containing compounds as Aβ aggregation inhibitors and antioxidants for the treatment of Alzheimer's disease. Medchemcomm. 2018;9(11):1862–1870. DOI: 10.1039/c8md00315g

286. Anam AK, Insogna K. Update on Osteoporosis Screening and Management. Med Clin North Am. 2021;105(6):1117–1134. DOI: 10.1016/j.mcna.2021.05.016

287. Curtis EM, van der Velde R, Moon RJ, van den Bergh JP, Geusens P, de Vries F, van Staa TP, Cooper C, Harvey NC. Epidemiology of fractures in the United Kingdom 1988-2012: Variation with age, sex, geography, ethnicity and socioeconomic status. Bone. 2016;87:19–26. DOI: 10.1016/j.bone.2016.03.006

288. Kanis JA. Diagnosis of osteoporosis and assessment of fracture risk. Lancet. 2002;359(9321):1929–1936. DOI: 10.1016/S0140-6736(02)08761-5

289. Rosen HN, Vokes TJ, Malabanan AO, Deal CL, Alele JD, Olenginski TP, Schousboe JT. The Official Positions of the International Society for Clinical Densitometry: vertebral fracture assessment. J Clin Densitom. 2013;16(4):482–488. DOI: 10.1016/j.jocd.2013.08.003

290. Egorova EA, Beitullaev AM, Matveev AV, Koryanova KN. Review of publications on drug-related problems investigations in osteoporosis patients. Pharmacy & Pharmacology. 2023;11(5):412–421. DOI: 10.19163/2307-9266-2023-11-5-412-421

291. Xu B, Dong F, Yang P, Wang Z, Yan M, Fang J, Zhang Y. Boric Acid Inhibits RANKL-Stimulated Osteoclastogenesis In Vitro and Attenuates LPS-Induced Bone Loss In Vivo. Biol Trace Elem Res. 2023;201(3):1388–1397. DOI: 10.1007/s12011-022-03231-5

292. Toker H, Ozdemir H, Balci Yuce H, Goze F. The effect of boron on alveolar bone loss in osteoporotic rats. J Dent Sci. 2016;11(3):331–337. DOI: 10.1016/j.jds.2016.03.011

293. Eltzschig HK, Eckle T. Ischemia and reperfusion--from mechanism to translation. Nat Med. 2011;17(11):1391–1401. DOI: 10.1038/nm.2507

294. Frangogiannis NG. Pathophysiology of Myocardial Infarction. Compr Physiol. 2015;5(4):1841–1875. DOI: 10.1002/cphy.c150006

295. Zhao Y, Zhang X, Chen X, Wei Y. Neuronal injuries in cerebral infarction and ischemic stroke: From mechanisms to treatment (Review). Int J Mol Med. 2022;49(2):15. DOI: 10.3892/ijmm.2021.5070

296. Wu MY, Yiang GT, Liao WT, Tsai AP, Cheng YL, Cheng PW, Li CY, Li CJ. Current Mechanistic Concepts in Ischemia and Reperfusion Injury. Cell Physiol Biochem. 2018;46(4):1650–1667. DOI: 10.1159/000489241

297. Yapca OE, Borekci B, Suleyman H. Ischemia-reperfusion damage. Eurasian J Med. 2013;45(2):126–127. DOI: 10.5152/eajm.2013.24

298. Güler S, Aslaner A, Ellidağ HY, Yıldırım Ş, Çakır T. The protective effect of boric acid on cholestatic rat liver ischemia reperfusion injury. Turk J Med Sci. 2021;51(5):2716–2726. DOI: 10.3906/sag-2101-153

299. Çolak S, Koc K, Yıldırım S, Geyikoğlu F. Effects of boric acid on ovarian tissue damage caused by experimental ischemia/reperfusion. Biotech Histochem. 2022;97(6):415–422. DOI: 10.1080/10520295.2021.2012823

300. Allahverdiyev O, Dzhafar S, Berköz M, Yıldırım M. Advances in current medication and new therapeutic approaches in epilepsy. East J Med. 2018;23(1):48–59. DOI: 10.5505/ejm.2018.62534

301. Berköz M, Yunusoğlu O, Aslan A, Bozkurt A. Investigation of antiepileptic potentials of usnic acid and some lichen species on the behavioral and biochemical levels in pentylenetetrazole-induced kindling model of epilepsy. J Res Pharm. 2024;28(5):1378–1390. DOI: 10.29228/jrp.816

302. Kurt AH, Bosnak M, Inan SY, Celik A, Uremis MM. Epileptogenic effects of G protein-coupled estrogen receptor 1 in the rat pentylenetetrazole kindling model of epilepsy. Pharmacol Rep. 2016;68(1):66–70. DOI: 10.1016/j.pharep.2015.07.001

303. Engel J Jr. Concepts of epilepsy. Epilepsia. 1995;36 Suppl 1:S23–29. DOI: 10.1111/j.1528-1157.1995.tb01648.x

304. Fisher RS, van Emde Boas W, Blume W, Elger C, Genton P, Lee P, Engel J Jr. Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia. 2005;46(4):470–472. DOI: 10.1111/j.0013-9580.2005.66104.x

305. Karademir M, Arslan G. The effect of boric acid on penicillin induced experimental epilepsy. CMJ. 2019;41(1):150–157. DOI: 10.7197/223.vi.543145

306. Akdere ÖE, Shikhaliyeva İ, Gümüşderelioğlu M. Boron mediated 2D and 3D cultures of adipose derived mesenchymal stem cells. Cytotechnology. 2019;71(2):611–622. DOI: 10.1007/s10616-019-00310-9

307. Lu L, Zhang Q, Ren M, Jin E, Hu Q, Zhao C, Li S. Effects of Boron on Cytotoxicity, Apoptosis, and Cell Cycle of Cultured Rat Sertoli Cells In vitro. Biol Trace Elem Res. 2020;196(1):223–230. DOI: 10.1007/s12011-019-01911-3

308. Yilmaz H, Özbek EN, İşel E, Debeleç-Bütüner B, Yetik‐Anacak G, Tansu Koparal A, Ulus G. Evaluation of Borax Pentahydrate as a Novel Antiangiogenic Agent. 2023. DOI: 10.21203/rs.3.rs-3267555/v1

309. Bolt HM, Duydu Y, Başaran N, Golka K. Boron and its compounds: current biological research activities. Arch Toxicol. 2017;91(8):2719–2722. DOI: 10.1007/s00204-017-2010-1

310. Demircan B, Velioğlu YS. Toxicological Evaluation of Boron Compounds Taken from Food and Environment. Akademik Gıda. 2020;18(3):312–322. DOI: 10.24323/akademik-gida.818193

311. Duydu Y, Başaran N, Üstündağ A, Aydin S, Ündeğer Ü, Ataman OY, Aydos K, Düker Y, Ickstadt K, Waltrup BS, Golka K, Bolt HM. Reproductive toxicity parameters and biological monitoring in occupationally and environmentally boron-exposed persons in Bandirma, Turkey. Arch Toxicol. 2011;85(6):589–600. DOI: 10.1007/s00204-011-0692-3

312. Hunt CD, Herbel JL, Nielsen FH. Metabolic responses of postmenopausal women to supplemental dietary boron and aluminum during usual and low magnesium intake: boron, calcium, and magnesium absorption and retention and blood mineral concentrations. Am J Clin Nutr. 1997;65(3):803–813. DOI: 10.1093/ajcn/65.3.803


Review

For citations:


Yunusoglu O., Kalfa I., Demirel M., Binzet M., Sevinc U., Turel I., Kurt A. A Comprehensive Review of the Pharmacological, Therapeutic, and Toxicological Properties of Boric Acid and Other Boron-Containing Compounds: Current Landscape and Future Perspectives. Pharmacy & Pharmacology. 2025;13(3):202-238. https://doi.org/10.19163/2307-9266-2025-13-3-202-238

Views: 93


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2307-9266 (Print)
ISSN 2413-2241 (Online)