Комплексный обзор фармакологических, терапевтических и токсикологических свойств борной кислоты и других борсодержащих соединений: текущее состояние и будущие перспективы
https://doi.org/10.19163/2307-9266-2025-13-3-202-238
Аннотация
Цель. В этом обзоре собрана информация, полученная в результате комплексного изучения научных ресурсов о последних достижениях в области здравоохранения, касающихся борных кислот и БСС, а также представлены текущие и будущие перспективы.
Материалы и методы. Источники литературы были собраны с использованием нескольких баз данных (WOS, PubMed, Scopus, Science Direct, SciVerse, SciELO, Cochrane Library, Embase и Академия Google). Были систематизированы данные о воздействии на здоровье борных кислот и БСС, используемых в доклинических и клинических исследованиях.
Результаты и залючение. Различные природные и синтетические борсодержащие соединения (БСС) все чаще используются в здравоохранении. На сегодняшний день 5 препаратов БСС (бортезомиб, крисаборол, иксазомиб, таваборол и ваборбактам) одобрены Управление по контролю качества пищевых продуктов и лекарственных средств США (FDA) для различных клинических целей. Также известно, что более 10 соединений на основе бора (алабостат, борокаптат натрия, воромицин, TOL-463 и другие) исследуются на различных этапах клинических испытаний. Кроме того, как видно, продолжаются клинические исследования комбинаций различных лекарственных средств с БСС для применения по новым показаниям. Кроме того, отмечается, что бор и борсодержащие соединения широко используются в качестве пищевых добавок. В этом обзоре также представлен анализ последних достижений в области фармакологической активности борных кислот и БСС, включая антиоксидантные, противовоспалительные, антиатеросклеротические, противоопухолевые, антимикробные, противопаразитарные, противовирусные, противопротозойные, кардиопротекторные, гепатопротекторные, нейропротекторные, остеопротекторные, противодиабетические, антиапоптотические, против ожирения, ферроптоз, влияние на иммунную систему, противоэпилептическую, антипаркинсоническую и альцгеймеровскую активность и соответствующие механизмы действия, полученные в ходе исследований как in vitro, так и in vivo.
Ключевые слова
Об авторах
О. ЮнусоглуТурция
доцент кафедры медицинской фармакологии медицинского факультета Университета Болу Абант Иззет Байсал (Турция).
14030, Турция, Болу Меркез/Болу, Кампус Гёлкёй.
И. Калфа
Турция
магистрант кафедры медицинской фармакологии медицинского факультета Университета Болу Абант Иззет Байсал (Турция).
14030, Турция, Болу Меркез/Болу, Кампус Гёлкёй.
М. Э. Демирель
Турция
доктор медицинских наук, преподаватель кафедры неотложной помощи медицинского факультета Университета Болу Абант Иззет Байсал (Турция).
14030, Турция, Болу Меркез/Болу, Кампус Гёлкёй.
М. А. Бинзет
Турция
кандидат медицинских наук, доктор медицинского факультета Университета Болу Абант Иззет Байсал (Турция).
14030, Турция, Болу Меркез/Болу, Кампус Гёлкёй.
У. З. Севинч
Турция
магистрант кафедры медицинской фармакологии медицинского факультета Университета Болу Абант Иззет Байсал (Турция).
14030, Турция, Болу Меркез/Болу, Кампус Гёлкёй.
И. Тюрель
Турция
доктор медицинских наук, профессор, заведующий кафедрой медицинской фармакологии медицинского факультета Университета Болу Абант Иззет Байсал (Турция).
14030, Турция, Болу Меркез/Болу, Кампус Гёлкёй.
А. Х. Курт
Турция
доктор медицинских наук, профессор, заведующий кафедрой медицинской фармакологии медицинского факультета Университета Болу Абант Иззет Байсал (Турция).
14030, Турция, Болу Меркез/Болу, Кампус Гёлкёй.
Список литературы
1. Khaliq H., Juming Z., Ke-Mei P. The Physiological Role of Boron on Health // Biol Trace Elem Res. – 2018. – Vol. 186, No. 1. – P. 31–51. DOI: 10.1007/s12011-018-1284-3
2. Dembitsky V.M., Smoum R., Al-Quntar A.A., Abu Ali H., Pergament I., Srebnik M. Natural occurrence of boron-containing compounds in plants, algae and microorganisms // Plant Science. – 2002. – Vol. 163, No. 5. – P. 931–942. DOI: 10.1016/S0168-9452(02)00174-7
3. Elevli B., Yaman İ., Laratte B. Estimation of the Turkish Boron Exportation to Europe // Mining. – 2022. – Vol. 2, No. 2. – P. 155–169. DOI: 10.3390/mining2020009
4. Kabu M., Akosman M.S. Biological effects of boron // Rev Environ Contam Toxicol. – 2013. – Vol. 225. – P. 57–75. DOI: 10.1007/978-1-4614-6470-9_2
5. Kabu M., Civelek T. The effects of borax on milk yield and selected metabolic parameters in Austrian Simmental (Fleckvieh) cows // Revue de Medecine Veterinaire. – 2012. – Vol. 163. – P. 419–430. DOI: 10.17221/8104-VETMED
6. Das B.C., Thapa P., Karki R., Schinke C., Das S., Kambhampati S., Banerjee S.K., Van Veldhuizen P., Verma A., Weiss L.M., Evans T. Boron chemicals in diagnosis and therapeutics // Future Med Chem. – 2013. – Vol. 5, No. 6. – P. 653–676. DOI: 10.4155/fmc.13.38
7. Loomis W.D., Durst R.W. Chemistry and biology of boron // Biofactors. – 1992. – Vol. 3, No. 4. – P. 229–239.
8. Bernard C.E., Harrass M.C., Manning M.J. Hayes' Handbook of Pesticide Toxicology (Third Edition). New York: Academic Press, 2010. – P. 2033–2053.
9. Nguyen V.D., Nguyen V.T., Jin S., Dang H.T., Larionov O.V. Organoboron chemistry comes to light: recent advances in photoinduced synthetic approaches to organoboron compounds // Tetrahedron. – 2019. – Vol. 75, No. 5. – P. 584–602. DOI: 10.1016/j.tet.2018.12.040
10. Wade C.R., Broomsgrove A.E., Aldridge S., Gabbaï F.P. Fluoride ion complexation and sensing using organoboron compounds // Chem Rev. – 2010. – Vol. 110, No. 7. – P. 3958–3984. DOI: 10.1021/cr900401a
11. Jelinek R., Kolusheva S. Carbohydrate biosensors // Chem Rev. – 2004. – Vol. 104, No. 12. – P. 5987–6015. DOI: 10.1021/cr0300284
12. Diaz D.B., Yudin A.K. The versatility of boron in biological target engagement // Nat Chem. – 2017. – Vol. 9, No. 8. – P. 731–742. DOI: 10.1038/nchem.2814
13. Sauvage E., Zervosen A., Dive G., Herman R., Amoroso A., Joris B., Fonzé E., Pratt RF., Luxen A., Charlier P., Kerff F. Structural basis of the inhibition of class A beta-lactamases and penicillin-binding proteins by 6-beta-iodopenicillanate // J Am Chem Soc. – 2009. – Vol. 131, No. 42. – P. 15262–15269. DOI: 10.1021/ja9051526
14. Keskin E., Allahverdiyeva S., İzem Özok H., Yunusoğlu O., Yardım Y. Voltammetric Quantification of the Anesthetic Drug Propofol (2,6-Diisopropylphenol) in Pharmaceutical Formulations on a Boron-Doped Diamond Electrode: Scientific Paper // Journal of the Serbian Chemical Society. – 2021. – Vol. 86, No. 7-8. – P. 711–724. DOI: 10.2298/JSC201019017K
15. Sutradhar S., Rahaman R., Bhattacharya S., Paul S., Paine T.K. Oxygenolytic cleavage of 1,2-diols with dioxygen by a mononuclear nonheme iron complex: Mimicking the reaction of myo-inositol oxygenase // J Inorg Biochem. – 2024. – Vol. 257. - P. 112611. DOI: 10.1016/j.jinorgbio.2024.112611
16. Mamedov V.A., Khafizova E.A., Algaeva N.E., Latypov S.K., Sinyashin O.G. Acid-Catalyzed Multicomponent Rearrangements via 2-((Quinoxalin-3(4H)-on-2-yl)(aryl)methylene)malononitriles, Generated In Situ, for Divergent Synthesis of Pyrroles with Different Substitution Patterns // J Org Chem. – 2020. – Vol. 85, No. 15. – P. 9887–9904. DOI: 10.1021/acs.joc.0c01180
17. Özok H.İ., Keskin E., Yardım Y. First voltammetric procedure for sensing synthetic thyroid hormone liothyronine sodium in tablet dosage form using anionic surfactant media at a boron-doped diamond electrode // Diamond and Related Materials. – 2025. – Vol. 153. – P. 112078. DOI: 10.1016/j.diamond.2025.112078
18. Özok H.İ., Kıran M., Oruç Y., Yavuz Y. The First Electroanalytical Study Of Umifenovir (Arbidol) Used As A Potential Antiviral Drug For The Treatment of SARS-CoV-2: A Voltammetric Quantification On The Boron-Doped Diamond Electrode By Using Anionic Surfactant Media // J Electrochem Society. – 2023. – Vol. 170, No. 1. – P. 016501. DOI 10.1149/1945-7111/acafa7
19. Allahverdiyeva S., Keskin E., Pınar P.T., Yunusoğlu O., Yardım Y., Şentürk Z. Electroanalytical investigation and determination of hepatitis C antiviral drug ledipasvir at a non-modified boron-doped diamond electrode // Diamond and Related Materials. – 2020. – Vol. 108. - P. 107962. DOI: 10.1016/j.diamond.2020.107962
20. Wang W., Xiao K., Zheng X., Zhu D., Yang Z., Tang J., Sun P., Wang J., Peng K. Effects of supplemental boron on growth performance and meat quality in African ostrich chicks. J Agric Food Chem. – 2014. – Vol. 62, No. 46. – P. 11024–11029. DOI: 10.1021/jf501789t
21. Çinar M., Küçükyilmaz K., Bozkurt M., Çatli A.U., Bintaş E., Akşit H., Konak R., Yamaner Ç., Seyrek K. Effects of dietary boron and phytase supplementation on growth performance and mineral profile of broiler chickens fed on diets adequate or deficient in calcium and phosphorus // Br Poult Sci. – 2015. – Vol. 56, No. 5. – P. 576–589. DOI: 10.1080/00071668.2015.1079699
22. Fort D.J. Boron deficiency disables Xenopus laevis oocyte maturation events // Biol Trace Elem Res. – 2002. – Vol. 85, No. 2. – P. 157–169. DOI: 10.1385/BTER:85:2:157
23. Hunt C.D. Dietary boron: progress in establishing essential roles in human physiology // J Trace Elem Med Biol. – 2012. – Vol. 26, No. 2-3. – P. 157–160. DOI: 10.1016/j.jtemb.2012.03.014
24. Nielsen F.H. Is boron nutritionally relevant? // Nutr Rev. – 2008. – Vol. 66, No. 4. – P. 183–191. DOI: 10.1111/j.1753-4887.2008.00023.x
25. Bozkurt M., Küçükyılmaz K., Catlı A.U., Cınar M., Cabuk M., Bintaş E. Effects of boron supplementation to diets deficient in calcium and phosphorus on performance with some serum, bone and fecal characteristics of broiler chickens // Asian-Australas J Anim Sci. – 2012. – Vol. 25, No. 2. – P. 248–255. DOI: 10.5713/ajas.2011.11211
26. Adya R., Tan B.K., Chen J., Randeva H.S. Nuclear factor-kappaB induction by visfatin in human vascular endothelial cells: its role in MMP-2/9 production and activation // Diabetes Care. – 2008. – Vol. 31, No. 4. – P. 758–760. DOI: 10.2337/dc07-1544
27. Cheng J., Peng K., Jin E., Zhang Y., Liu Y., Zhang N., Song H., Liu H., Tang Z. Effect of additional boron on tibias of African ostrich chicks // Biol Trace Elem Res. – 2011. – Vol. 144, No. 1-3. – P. 538–549. DOI: 10.1007/s12011-011-9024-y
28. Basoglu A., Sevinc M., Birdane F.M., Boydak M. Efficacy of sodium borate in the prevention of fatty liver in dairy cows // J Vet Intern Med. – 2002. – Vol. 16, No. 6. – P. 732–735. DOI: 10.1892/0891-6640(2002)016<0732:eosbit>2.3.co. Erratum in: J Vet Intern Med. – 2003. – Vol. 17, No. 2. – P. 245.
29. Penland J.G. Dietary boron, brain function, and cognitive performance // Environ Health Perspect. – 1994. – Vol. 102, Suppl 7 (Suppl 7). – P. 65–72. DOI: 10.1289/ehp.94102s765
30. Devirian T.A., Volpe S.L. The physiological effects of dietary boron // Crit Rev Food Sci Nutr. – 2003. – Vol. 43, No. 2. – P. 219–231. DOI: 10.1080/10408690390826491
31. Cortes S., Reynaga-Delgado E., Sancha A.M., Ferreccio C. Boron exposure assessment using drinking water and urine in the North of Chile // Sci Total Environ. – 2011. – Vol. 410–411. – P. 96–101. DOI: 10.1016/j.scitotenv.2011.08.073
32. Deutsche Gesellschaft für Anthropologie., and Australasian Society for Human Biology. Homo : Internationale Zeitschrift Für Die Vergleichende Forschung Am Menschen. Stuttgart: Enke., 1949.
33. Scorei R.I., Popa R. Jr. Boron-containing compounds as preventive and chemotherapeutic agents for cancer // Anticancer Agents Med Chem. – 2010. – Vol. 10, No. 4. – P. 346–351. DOI: 10.2174/187152010791162289
34. Ozansoy M., AltintaŞ M.Ö., Ozansoy M.B., GÜnay N., KiliÇ E., KiliÇ Ü. Two boron-containing compounds affect the cellular viability of SH-SY5Y cells in an in vitro amyloid-beta toxicity model // Turk J Biol. – 2020. – Vol. 44, No. 4. – P. 208–214. DOI: 10.3906/biy-2001-22
35. Barrón-González M., Montes-Aparicio A.V., Cuevas-Galindo M.E., Orozco-Suárez S., Barrientos R., Alatorre A., Querejeta E., Trujillo-Ferrara J.G., Farfán-García E.D., Soriano-Ursúa M.A. Boron-containing compounds on neurons: Actions and potential applications for treating neurodegenerative diseases // J Inorg Biochem. – 2023. – Vol. 238. – P. 112027. DOI: 10.1016/j.jinorgbio.2022.112027
36. Christopher R. Ethnobotanical uses, biological activities and phytochemistry of mangrove plant species: A review // Journal of Biologically Active Products from Nature. – 2024. – Vol. 14, No. 5. – P. 581–608. DOI: 10.1080/22311866.2024.2431963
37. Penland J.G. Quantitative analysis of EEC effects following experimental marginal magnesium and boron deprivation. Magnesium Res. 1995. – Vol. 8, No. 4. – P. 341–358.
38. Penland JG. The importance of boron nutrition for brain and psychological function // Biol Trace Elem Res. 1998. – Vol. 66, No. 1-3. – P. 299–317. DOI: 10.1007/BF02783144
39. Soriano-Ursúa M.A., Farfán-García ED., López-Cabrera Y., Querejeta E., Trujillo-Ferrara JG. Boron-containing acids: preliminary evaluation of acute toxicity and access to the brain determined by Raman scattering spectroscopy // Neurotoxicology. – 2014. – Vol. 40. – P. 8–15. DOI: 10.1016/j.neuro.2013.10.005
40. Naghii M.R., Darvishi P., Ebrahimpour Y., Ghanizadeh G., Mofid M., Hedayati M., Asgari A.R. Effect of combination therapy of fatty acids, calcium, vitamin D and boron with regular physical activity on cardiovascular risk factors in rat // J Oleo Sci. – 2012. – Vol. 61, No. 2. – P. 103–111. DOI: 10.5650/jos.61.103
41. Benderdour M., Bui-Van T., Dicko A., Belleville F. In vivo and in vitro effects of boron and boronated compounds // J Trace Elem Med Biol. – 1998. – Vol. 12, No. 1. – P. 2–7. DOI: 10.1016/S0946-672X(98)80014-X
42. Henderson K.A., Kobylewski S.E., Yamada K.E., Eckhert C.D. Boric acid induces cytoplasmic stress granule formation, eIF2α phosphorylation, and ATF4 in prostate DU-145 cells // Biometals. – 2015. – Vol. 28, No. 1. – P. 133–141. DOI: 10.1007/s10534-014-9809-5
43. Barranco W.T., Eckhert C.D. Boric acid inhibits human prostate cancer cell proliferation // Cancer Lett. – 2004. – Vol. 216, No. 1. – P. 21–29. DOI: 10.1016/j.canlet.2004.06.001
44. Usuda K., Kono K., Dote T., Watanabe M., Shimizu H., Tanimoto Y., Yamadori E. An overview of boron, lithium, and strontium in human health and profiles of these elements in urine of Japanese // Environ Health Prev Med. – 2007. – Vol. 12, No. 6. – P. 231–237. DOI: 10.1007/BF02898029
45. Herrero M., Ibáñiez E., Cifuentes A. Analysis of natural antioxidants by capillary electromigration methods // J Sep Sci. – 2005. – Vol. 28, No. 9-10. – P. 883–897. DOI: 10.1002/jssc.200400104
46. Turkez H., Geyikoğlu F., Dirican E., Tatar A. In vitro studies on chemoprotective effect of borax against aflatoxin B1-induced genetic damage in human lymphocytes // Cytotechnology. – 2012. – Vol. 64, No. 6. – P. 607–612. DOI: 10.1007/s10616-012-9454-1
47. Turkez H., Tatar A., Hacimuftuoglu A., Ozdemir E. Boric acid as a protector against paclitaxel genotoxicity // Acta Biochim Pol. – 2010. – Vol. 57, No. 1. – P. 95–97.
48. Turkez H., Geyikoglu F., Tatar A., Keles M.S., Kaplan I. The effects of some boron compounds against heavy metal toxicity in human blood // Exp Toxicol Pathol. – 2012. – Vol. 64, No. 1-2. – P. 93–101. DOI: 10.1016/j.etp.2010.06.011
49. Ustündağ A., Behm C., Föllmann W., Duydu Y., Degen G.H. Protective effect of boric acid on lead- and cadmium-induced genotoxicity in V79 cells // Arch Toxicol. – 2014. – Vol. 88, No. 6. – P. 1281–1289. DOI: 10.1007/s00204-014-1235-5
50. Turkez H. Effects of boric acid and borax on titanium dioxide genotoxicity // J Appl Toxicol. – 2008. – Vol. 28, No. 5. – P. 658–664. DOI: 10.1002/jat.1318
51. Fernandes G.F.S., Denny W.A., Dos Santos J.L. Boron in drug design: Recent advances in the development of new therapeutic agents // Eur J Med Chem. – 2019. – Vol. 179:791–804. DOI: 10.1016/j.ejmech.2019.06.092
52. Ban H.S., Nakamura H. Boron-Based Drug Design // Chem Rec. – 2015. – Vol. 15, No. 3. – P. 616–635. DOI: 10.1002/tcr.201402100
53. Sharma N., Sharma D. An upcoming drug for onychomycosis: Tavaborole // J Pharmacol Pharmacother. – 2015. – Vol. 6, No. 4. – P. 236–239. DOI: 10.4103/0976-500X.171870
54. Dhillon S. Correction to: Meropenem/Vaborbactam: A Review in Complicated Urinary Tract Infections // Drugs. – 2018. – Vol. 78, No. 13. – P. 1383. DOI: 10.1007/s40265-018-0974-7. Erratum for: Drugs. – 2018. – Vol. 78, No. 12. – P. 1259–1270. DOI: 10.1007/s40265-018-0966-7
55. Fu Z., Lu C., Zhang C., Qiao B. PSMA5 promotes the tumorigenic process of prostate cancer and is related to bortezomib resistance // Anticancer Drugs. – 2019. – Vol. 30, No. 7. – P. e0773. DOI: 10.1097/CAD.0000000000000773
56. Paller A.S., Tom W.L., Lebwohl M.G., Blumenthal R.L., Boguniewicz M., Call R.S., Eichenfield L.F., Forsha D.W., Rees W.C., Simpson E.L., Spellman M.C., Stein Gold L.F., Zaenglein A.L., Hughes M.H., Zane L.T., Hebert A.A. Efficacy and safety of crisaborole ointment, a novel, nonsteroidal phosphodiesterase 4 (PDE4) inhibitor for the topical treatment of atopic dermatitis (AD) in children and adults // J Am Acad Dermatol. – 2016. – Vol. 75, No. 3. – P. 494–503.e6. DOI: 10.1016/j.jaad.2016.05.046. Erratum in: J Am Acad Dermatol. – 2017. – Vol. 76, No. 4. – P. 777. DOI: 10.1016/j.jaad.2017.01.026
57. Muz B., Ghazarian R.N., Ou M., Luderer M.J., Kusdono H.D., Azab A.K. Spotlight on ixazomib: potential in the treatment of multiple myeloma // Drug Des Devel Ther. – 2016. – Vol. 10. – P. 217–226. DOI: 10.2147/DDDT.S93602
58. Das B.C., Adil Shareef M., Das S., Nandwana N.K., Das Y., Saito M., Weiss L.M. Boron-Containing heterocycles as promising pharmacological agents // Bioorg Med Chem. – 2022. – Vol. 63. – P. 116748. DOI: 10.1016/j.bmc.2022.116748
59. Marrazzo J.M., Dombrowski J.C., Wierzbicki M.R., Perlowski C., Pontius A., Dithmer D., Schwebke J. Safety and Efficacy of a Novel Vaginal Anti-infective, TOL-463, in the Treatment of Bacterial Vaginosis and Vulvovaginal Candidiasis: A Randomized, Single-blind, Phase 2, Controlled Trial // Clin Infect Dis. – 2019. – Vol. 68, No. 5. – P. 803–809. DOI: 10.1093/cid/ciy554
60. Grégoire V., Evans M., Le Q.T., Bourhis J., Budach V., Chen A., Eisbruch A., Feng M., Giralt J., Gupta T., Hamoir M., Helito J.K., Hu C., Hunter K., Johansen J., Kaanders J., Laskar S.G., Lee A., Maingon P., Mäkitie A., Micciche' F., Nicolai P., O'Sullivan B., Poitevin A., Porceddu S., Składowski K., Tribius S., Waldron J., Wee J., Yao M., Yom S.S., Zimmermann F., Grau C. Delineation of the primary tumour Clinical Target Volumes (CTV-P) in laryngeal, hypopharyngeal, oropharyngeal and oral cavity squamous cell carcinoma: AIRO, CACA, DAHANCA, EORTC, GEORCC, GORTEC, HKNPCSG, HNCIG, IAG-KHT, LPRHHT, NCIC CTG, NCRI, NRG Oncology, PHNS, SBRT, SOMERA, SRO, SSHNO, TROG consensus guidelines // Radiother Oncol. – 2018. – Vol. 126, No. 1. – P. 3–24. DOI: 10.1016/j.radonc.2017.10.016
61. Yang H., Wang J., Zhang X., Zhang Y., Qin Z.L., Wang H., Luo X.Y. Application of Topical Phosphodiesterase 4 Inhibitors in Mild to Moderate Atopic Dermatitis: A Systematic Review and Meta-analysis // JAMA Dermatol. – 2019. – Vol. 155, No. 5. – P. 585–593. DOI: 10.1001/jamadermatol.2019.0008. Erratum in: JAMA Dermatol. – 2019. – Vol. 155, No. 7. – P. 865. DOI: 10.1001/jamadermatol.2019.1346
62. Rezanka T., Sigler K. Biologically active compounds of semi-metals // Phytochemistry. – 2008. – Vol. 69, No. 3. – P. 585–606. DOI: 10.1016/j.phytochem.2007.09.018
63. Chong P.Y., Shotwell J.B., Miller J., Price D.J., Maynard A., Voitenleitner C., Mathis A., Williams S., Pouliot J.J., Creech K., Wang F., Fang J., Zhang H., Tai V.W., Turner E., Kahler K.M., Crosby R., Peat A.J. Design of N-Benzoxaborole Benzofuran GSK8175-Optimization of Human Pharmacokinetics Inspired by Metabolites of a Failed Clinical HCV Inhibitor // J Med Chem. – 2019. – Vol. 62, No. 7. – P. 3254–3267. DOI: 10.1021/acs.jmedchem.8b01719
64. Diacon A.H., Barry C.E. 3rd, Carlton A., Chen R.Y., Davies M., de Jager V., Fletcher K., Koh G.C.K.W., Kontsevaya I., Heyckendorf J., Lange C., Reimann M., Penman S.L., Scott R., Maher-Edwards G., Tiberi S., Vlasakakis G., Upton C.M., Aguirre D.B. A first-in-class leucyl-tRNA synthetase inhibitor, ganfeborole, for rifampicin-susceptible tuberculosis: a phase 2a open-label, randomized trial // Nat Med. – 2024. – Vol. 30, No. 3. – P. 896–904. DOI: 10.1038/s41591-024-02829-7
65. Sun D., Tsivkovski R., Pogliano J., Tsunemoto H., Nelson K., Rubio-Aparicio D., Lomovskaya O. Intrinsic Antibacterial Activity of Xeruborbactam In Vitro: Assessing Spectrum and Mode of Action // Antimicrob Agents Chemother. – 2022. – Vol. 66, No. 10. – P. e0087922. DOI: 10.1128/aac.00879-22
66. Wall R.J., Rico E., Lukac I., Zuccotto F., Elg S., Gilbert I.H., Freund Y., Alley M.R.K., Field M.C., Wyllie S., Horn D. Clinical and veterinary trypanocidal benzoxaboroles target CPSF3 // Proc Natl Acad Sci U S A. – 2018. – Vol. 115, No. 38. – P. 9616–9621. DOI: 10.1073/pnas.1807915115
67. Karlowsky J.A., Hackel M.A., Wise M.G., Six D.A., Uehara T., Daigle D.M., Cusick S.M., Pevear D.C., Moeck G., Sahm D.F. In Vitro Activity of Cefepime-Taniborbactam and Comparators against Clinical Isolates of Gram-Negative Bacilli from 2018 to 2020: Results from the Global Evaluation of Antimicrobial Resistance via Surveillance , No. GEARS) Program // Antimicrob Agents Chemother. – 2023. – Vol. 67, No. 1. – P. e0128122. DOI: 10.1128/aac.01281-22
68. Jin W.H., Seldon C., Butkus M., Sauerwein W., Giap H.B. A Review of Boron Neutron Capture Therapy: Its History and Current Challenges // Int J Part Ther. – 2022. – Vol. 9, No. 1. – P. 71–82. DOI: 10.14338/IJPT-22-00002.1
69. Uluisik I., Karakaya H.C., Koc A. The importance of boron in biological systems // J Trace Elem Med Biol. – 2018. – Vol. 45. - P. 156–162. DOI: 10.1016/j.jtemb.2017.10.008. Erratum in: J Trace Elem Med Biol. – 2019. – Vol. 55. – P. 215. DOI: 10.1016/j.jtemb.2018.04.001
70. Soriano-Ursúa M.A., Farfán-García E.D., Geninatti-Crich S. Turning Fear of Boron Toxicity into Boron-containing Drug Design // Curr Med Chem. – 2019. – Vol. 26, No. 26. – P. 5005–5018. DOI: 10.2174/0929867326666190327154954
71. Soriano-Ursúa M.A., Das B.C., Trujillo-Ferrara J.G. Boron-containing compounds: chemico-biological properties and expanding medicinal potential in prevention, diagnosis and therapy // Expert Opin Ther Pat. – 2014. – Vol. 24, No. 5. – P. 485–500. DOI: 10.1517/13543776.2014.881472
72. Scorei R. Is boron a prebiotic element? A mini-review of the essentiality of boron for the appearance of life on earth // Orig Life Evol Biosph. – 2012. – Vol. 42, No. 1. – P. 3–17. DOI: 10.1007/s11084-012-9269-2
73. Song S., Gao P., Sun L., Kang D., Kongsted J., Poongavanam V., Zhan P., Liu X. Recent developments in the medicinal chemistry of single boron atom-containing compounds // Acta Pharm Sin B. – 2021. – Vol. 11, No. 10. – P. 3035–3059. DOI: 10.1016/j.apsb.2021.01.010
74. Maslah H., Skarbek C., Pethe S., Labruère R. Anticancer boron-containing prodrugs responsive to oxidative stress from the tumor microenvironment // Eur J Med Chem. – 2020. – Vol. 207. – P. 112670. DOI: 10.1016/j.ejmech.2020.112670
75. Baker S.J., Ding C.Z., Akama T., Zhang Y.K., Hernandez V., Xia Y. Therapeutic potential of boron-containing compounds // Future Med Chem. – 2009. – Vol. 1, No. 7. – P. 1275–1288. DOI: 10.4155/fmc.09.71
76. Nunes A.T., Annunziata C.M. Proteasome inhibitors: structure and function // Semin Oncol. – 2017. – Vol. 44, No. 6. – P. 377–380. DOI: 10.1053/j.seminoncol.2018.01.004
77. Soriano-Ursúa M.A., Mancilla-Percino T., Correa-Basurto J., Querejeta E., Trujillo-Ferrara J.G. Give boron a chance: boron containing compounds reach ionotropic and metabotropic transmembrane receptors // Mini Rev Med Chem. – 2011. – Vol. 11, No. 12. – P. 1031–1038. DOI: 10.2174/138955711797247743
78. Hunter P. Not boring at all. Boron is the new carbon in the quest for novel drug candidates // EMBO Rep. – 2009. – Vol. 10, No. 2. – P. 125–128. DOI: 10.1038/embor.2009.2
79. Das B.C., Nandwana N.K., Das S., Nandwana V., Shareef M.A., Das Y., Saito M., Weiss L.M., Almaguel F., Hosmane N.S., Evans T. Boron Chemicals in Drug Discovery and Development: Synthesis and Medicinal Perspective // Molecules. – 2022. – Vol. 27, No. 9. – P. 2615. DOI: 10.3390/molecules27092615
80. Ri C.C., Mf C.., D R.V., T P.C., F T.C., Ir S., A A.G., Ma S.U. Boron-Containing Compounds for Prevention, Diagnosis, and Treatment of Human Metabolic Disorders // Biol Trace Elem Res. – 2023. – Vol. 201, No. 5. – P. 2222–2239. DOI: 10.1007/s12011-022-03346-9
81. Goldbach H.E., Wimmer M.A. Boron in plants and animals: Is there a role beyond cell-wall structure? // Journal of Plant Nutrition and Soil Science. – 2007. – Vol. 170, No. 1. – P. 39–48. DOI: 10.1002/jpln.200625161
82. Tanaka M., Fujiwara T. Physiological roles and transport mechanisms of boron: perspectives from plants // Pflugers Arch. – 2008. – Vol. 456, No. 4. – P. 671–617. DOI: 10.1007/s00424-007-0370-8
83. Kohorn B.D., Kohorn S.L., Todorova T., Baptiste G., Stansky K., McCullough M. A dominant allele of Arabidopsis pectin-binding wall-associated kinase induces a stress response suppressed by MPK6 but not MPK3 mutations // Mol Plant. – 2012. – Vol. 5, No. 4. – P. 841–851. DOI: 10.1093/mp/ssr096
84. Matoh T., Ishigaki K., Mizutani M., Matsunaga W., Takabe K. Boron Nutrition of Cultured Tobacco BY-2 Cells: I. Requirement for and Intracellular Localization of Boron and Selection of Cells that Tolerate Low Levels of Boron // Plant Cell Physiology. – 1992. – Vol. 33, No. 8. – P. 1135–1141. DOI: 10.1093/oxfordjournals.pcp.a078365
85. Hu H., Brown P.H. Localization of Boron in Cell Walls of Squash and Tobacco and Its Association with Pectin (Evidence for a Structural Role of Boron in the Cell Wall) // Plant Physiol. – 1994. – Vol. 105, No. 2. – P. 681–689. DOI: 10.1104/pp.105.2.681
86. Hu H., Brown P.H., Labavitch J.M. Species variability in boron requirement is correlated with cell wall pectin // Journal of Experimental Botany. – 1996. – Vol. 47, No. 2. – P. 227–232. DOI: 10.1093/jxb/47.2.227
87. Sentürk N.B., Kasapoglu B., Sahin E., Ozcan O., Ozansoy M., Ozansoy M.B., Siyah P., Sezerman U., Sahin F. The Potential Role of Boron in the Modulation of Gut Microbiota Composition: An In Vivo Pilot Study // Pharmaceuticals. – 2024. – Vol. 17, No. 10. – P. 1334. DOI: 10.3390/ph17101334
88. Rondanelli M., Faliva M.A., Peroni G., Infantino V., Gasparri C., Iannello G., Perna S., Riva A., Petrangolini G., Tartara A. Pivotal role of boron supplementation on bone health: A narrative review // J Trace Elem Med Biol. – 2020. – Vol. 62. – P. 126577. DOI: 10.1016/j.jtemb.2020.126577
89. Vanderpool R.A., Hoff D., Johnson P.E. Use of inductively coupled plasma-mass spectrometry in boron-10 stable isotope experiments with plants, rats, and humans // Environ Health Perspect. – 1994. – Vol. 102, Suppl 7 (Suppl 7). – P. 13–20. DOI: 10.1289/ehp.94102s713
90. Nielsen F.H. Update on human health effects of boron // J Trace Elem Med Biol. – 2014. – Vol. 28, No. 4. – P. 383–387. DOI: 10.1016/j.jtemb.2014.06.023
91. Dinca L., Scorei I.R. Boron in Human Nutrition and its Regulations Use // Journal of Nutritional Therapeutics. – 2013. – Vol. 2, No. 1. – P. 22–29. DOI: 10.6000/1929-5634.2013.02.01.3
92. Levêque D., Carvalho M.C., Maloisel F. Review. Clinical pharmacokinetics of bortezomib // In Vivo. – 2007. – Vol. 21, No. 2. – P. 273–278.
93. Murray F.J. A comparative review of the pharmacokinetics of boric acid in rodents and humans // Biol Trace Elem Res. – 1998. – Vol. 66, No. 1-3. – P. 331–341. DOI: 10.1007/BF02783146
94. Ciofani G. Potential applications of boron nitride nanotubes as drug delivery systems // Expert Opin Drug Deliv. – 2010. – Vol. 7, No. 8. – P. 889–893. DOI: 10.1517/17425247.2010.499897
95. Ocampo-Néstor A.L., Trujillo-Ferrara J.G., Abad-García A., Reyes-López C., Geninatti-Crich S., Soriano-Ursúa M.A. Boron's journey: advances in the study and application of pharmacokinetics // Expert Opin Ther Pat. – 2017. – Vol. 27, No. 2. – P. 203–215. DOI: 10.1080/13543776.2017.1252750
96. Samman S., Naghii M.R., Lyons Wall P.M., Verus A.P. The nutritional and metabolic effects of boron in humans and animals // Biol Trace Elem Res. – 1998. – Vol. 66, No. 1-3. – P. 227–235. DOI: 10.1007/BF02783140
97. Ku W.W., Chapin R.E., Moseman R.F., Brink R.E., Pierce K.D., Adams K.Y. Tissue disposition of boron in male Fischer rats // Toxicol Appl Pharmacol. – 1991. – Vol. 111, No. 1. – P. 145–151. DOI: 10.1016/0041-008x(91)90143-3
98. WHO (World Health Organization), 2009. Boron in Drinking-water. Background document for development of WHO Guidelines for Drinking-water Quality. World Health Organization, Geneva, Switzerland. 28 p.
99. Erkeç Ö.E., Huyut Z., Yunusoğlu O., Eren B. Effects of Ghrelin on Brain and Serum Inflammatory Parameters in PTZ-Kindling Model in Rats // Neurochem J. – 2025. – Vol. 19. – P. 74–80. DOI: 10.1134/S1819712425700096
100. Bindu S., Mazumder S., Bandyopadhyay U. Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage: A current perspective // Biochem Pharmacol. – 2020. – Vol. 180. – P. 114147. DOI: 10.1016/j.bcp.2020.114147
101. Davis A., Robson J. The dangers of NSAIDs: look both ways // Br J Gen Pract. – 2016. – Vol. 66, No. 645. – P. 172–173. DOI: 10.3399/bjgp16X684433
102. Cao J., Jiang L., Zhang X., Yao X., Geng C., Xue X., Zhong L. Boric acid inhibits LPS-induced TNF-alpha formation through a thiol-dependent mechanism in THP-1 cells // J Trace Elem Med Biol. – 2008. – Vol. 22, No. 3. – P. 189–195. DOI: 10.1016/j.jtemb.2008.03.005
103. Zhang X., Wang G., Chen S. Boric Acid Alleviates Lipopolysaccharide-Induced Acute Lung Injury in Mice // Biol Trace Elem Res. – 2025. – Vol. 203, No. 3. – P. 1494–1501. DOI: 10.1007/s12011-024-04240-2
104. Bozkurt S.B., Hakki S.S., Nielsen F.H. Boric acid alleviates periodontal inflammation induced by IL-1β in human gingival fibroblasts // J Trace Elem Med Biol. – 2024. – Vol. 84. – P. 127466. DOI: 10.1016/j.jtemb.2024.127466
105. Başeğmez M., Doğan M.F. Effects of boric acid on oxidant-antioxidant, proinflammatory cytokine levels, and biochemical parameters in aged rats // Pam Med J. – 2024. – Vol. 17, No. 2. – P. 369–379. DOI: 10.31362/patd.1438593
106. Gündoğdu A.Ç., Özbayer C., Kar F. Boric Acid Alleviates Gastric Ulcer by Regulating Oxidative Stress and Inflammation-Related Multiple Signaling Pathways // Biol Trace Elem Res. – 2024. – Vol. 202, No. 5. – P. 2124–2132. DOI: 10.1007/s12011-023-03817-7
107. Wu J.Y., Lay C.H., Chen C.C., Wu S.Y., Zhou D., Abdula P.M. Textile wastewater bioremediation using immobilized Chlorella sp. Wu-G23 with continuous culture // Clean Techn Environ Policy. – 2021. – Vol. 23. – P. 153–161. DOI: 10.1007/s10098-020-01847-6
108. Yamada K.E., Eckhert C.D. Boric Acid Activation of eIF2α and Nrf2 Is PERK Dependent: a Mechanism that Explains How Boron Prevents DNA Damage and Enhances Antioxidant Status // Biol Trace Elem Res. – 2019. – Vol. 188, No. 1. – P. 2–10. DOI: 10.1007/s12011-018-1498-4
109. Ince S., Keles H., Erdogan M., Hazman O., Kucukkurt I. Protective effect of boric acid against carbon tetrachloride-induced hepatotoxicity in mice // Drug Chem Toxicol. – 2012. – Vol. 35, No. 3. – P. 285–292. DOI: 10.3109/01480545.2011.607825
110. Chen S., Fan H., Pei Y., Zhang K., Zhang F., Hu Q., Jin E., Li S. MAPK Signaling Pathway Plays Different Regulatory Roles in the Effects of Boric Acid on Proliferation, Apoptosis, and Immune Function of Splenic Lymphocytes in Rats // Biol Trace Elem Res. – 2024. – Vol. 202, No. 6. – P. 2688–2701. DOI: 10.1007/s12011-023-03862-2
111. Karabağ F., İnce S., Demirel H.H. Boric acid is associated with the suppression of apoptosis and endoplasmic reticulum stress in rat model of paracetamol -induced hepatotoxicity // Journal of Taibah University for Science. – 2023. – Vol. 17, No. 1. – P. 2250565. DOI: 10.1080/16583655.2023.2250565
112. Sevimli M., Bayram D., Özgöçmen M., Armağan I., Semerci Sevimli T. Boric acid suppresses cell proliferation by TNF signaling pathway mediated apoptosis in SW-480 human colon cancer line // J Trace Elem Med Biol. – 2022. – Vol. 71. – P. 126958. DOI: 10.1016/j.jtemb.2022.126958
113. Gundogdu K., Gundogdu G., Demirkaya Miloglu F., Demirci T., Tascı S.Y., Abd El-Aty A.M. Anti-Inflammatory Effects of Boric Acid in Treating Knee Osteoarthritis: Biochemical and Histopathological Evaluation in Rat Model // Biol Trace Elem Res. – 2024. – Vol. 202, No. 6. – P. 2744–2754. DOI: 10.1007/s12011-023-03872-0
114. Tekeli H., Ekren Asıcı G.S., Bildik A. Anti-inflammatory effect of boric acid on cytokines in ovariectomy-induced rats // Cell Mol Biol (Noisy-le-grand). – 2022. – Vol. 67, No. 4. – P. 313–320. DOI: 10.14715/cmb/2021.67.4.35
115. Quintero-Rincón P., Caballero-Gallardo K., Olivero-Verbel J. Natural anticancer agents: prospection of medicinal and aromatic plants in modern chemoprevention and chemotherapy // Nat Prod Bioprospect. – 2025. – Vol. 15, No. 1. – P. 25. DOI: 10.1007/s13659-025-00511-0
116. Shahzadi A., Sonmez I., Allahverdiyev O., Onal B., Kandaz C. Cardiac Troponin-I , No. cTnI) a Biomarker of Cardiac Injuries Induced by Doxorubicin Alone and in Combination with Ciprofloxacin, Following Acute and Chronic Dose Protocol in Sprague Dawley Rats // Int J Pharmacol. – 2014. – Vol. 10, No. 5. – P. 258–266. DOI: 10.3923/ijp.2014.258.266
117. Kahraman E., Göker E. Boric acid exert anti-cancer effect in poorly differentiated hepatocellular carcinoma cells via inhibition of AKT signaling pathway // J Trace Elem Med Biol. – 2022. – Vol. 73. – P. 127043. DOI: 10.1016/j.jtemb.2022.127043
118. Cabus U., Secme M., Kabukcu C., Cil N., Dodurga Y., Mete G., Fenkci I.V. Boric acid as a promising agent in the treatment of ovarian cancer: Molecular mechanisms // Gene. – 2021. – Vol. 796-797. – P. 145799. DOI: 10.1016/j.gene.2021.145799
119. Çakır Gündoğdu A., Arı N.S., Höbel A., Şenol G., Eldiven Ö., Kar F. Boric Acid Exhibits Anticancer Properties in Human Endometrial Cancer Ishikawa Cells // Cureus. – 2023. – Vol. 15, No. 8. – P. e44277. DOI: 10.7759/cureus.44277
120. Bayram D., Özgöçmen M., Çelik D.A., Sarman E., Sevimli M. Does Boric Acid Inhibit Cell Proliferation on MCF-7 and MDA-MB-231 Cells in Monolayer and Spheroid Cultures by Using Apoptosis Pathways? // Biol Trace Elem Res. – 2024. – Vol. 202, No. 5. – P. 2008–2021. DOI: 10.1007/s12011-023-03810-0
121. Aydin H.E., Gunduz M.K., Kizmazoglu C., Kandemir T., Arslantas A. Cytotoxic Effect of Boron Application on Glioblastoma Cells // Turk Neurosurg. – 2021. – Vol. 31, No. 2. – P. 206–210. DOI: 10.5137/1019-5149.JTN.30316-20.1
122. Lin S.Y., Lin C.J., Liao J.., Peir J.J., Chen W.L., Chi C.W., Lin Y.C., Liu Y.M., Chou F.I. Therapeutic efficacy for hepatocellular carcinoma by boric acid-mediated boron neutron capture therapy in a rat model // Anticancer Res. – 2013. – Vol. 33, No. 11. – P. 4799–4809.
123. Turkez H., Arslan M.E., Tatar A., Mardinoglu A. Promising potential of boron compounds against Glioblastoma: In Vitro antioxidant, anti-inflammatory and anticancer studies // Neurochem Int. – 2021. – Vol. 149. – P. 105137. DOI: 10.1016/j.neuint.2021.105137
124. Scorei R., Ciubar R., Ciofrangeanu C.M., Mitran V., Cimpean A., Iordachescu D. Comparative effects of boric acid and calcium fructoborate on breast cancer cells // Biol Trace Elem Res. – 2008. – Vol. 122, No. 3. – P. 197–205. DOI: 10.1007/s12011-007-8081-8
125. Sevimli T.S., Ghorbani A., Gakhiyeva F., Cevizlidere B.D., Sevimli M. Boric Acid Alters the Expression of DNA Double Break Repair Genes in MCF-7-Derived Breast Cancer Stem Cells // Biol Trace Elem Res. – 2024. – Vol. 202, No. 9. – P. 3980–3987. DOI: 10.1007/s12011-023-03987-4
126. Sezekler I., Ersoz M., Turan M.A., Coskun Z.M. Investigation of the biochemical and apoptotic changes in breast cancer cells treated with leaf extract from tea (Camellia sinensis L.) grown with added boric acid // Pak J Pharm Sci. – 2020. – Vol. 33, No. 5. – P. 1927–1932.
127. Aladağ T., Firat F. Comparative effects of boric acid and resveratrol on mcf-7 breast cancer cells metastatic behavior // International Journal of Research –Granthaalayah. – 2022. – Vol. 10, No. 1. – P. 34–46. DOI: 10.29121/granthaalayah.v10.i1.2022.4460
128. Hacioglu C., Kar F., Kacar S., Sahinturk V., Kanbak G. High Concentrations of Boric Acid Trigger Concentration-Dependent Oxidative Stress, Apoptotic Pathways and Morphological Alterations in DU-145 Human Prostate Cancer Cell Line // Biol Trace Elem Res. – 2020. – Vol. 193, No. 2. – P. 400–409. DOI: 10.1007/s12011-019-01739-x
129. Morana O., Wood W., Gregory C.D. The Apoptosis Paradox in Cancer // Int J Mol Sci. – 2022. – Vol. 23, No. 3. – P. 1328. DOI: 10.3390/ijms23031328
130. Hilal B., Eldem A., Oz T., Pehlivan M., Pirim I. Boric Acid Affects Cell Proliferation, Apoptosis, and Oxidative Stress in ALL Cells // Biol Trace Elem Res. – 2024. – Vol. 202, No. 8. – P. 3614–3622. DOI: 10.1007/s12011-023-03958-9
131. Cengiz M., Cetik Yildiz S., Demir C., Şahin İK., Teksoy Ö., Ayhanci A. Hepato-preventive and anti-apoptotic role of boric acid against liver injury induced by cyclophosphamide // J Trace Elem Med Biol. – 2019. – Vol. 53. – P. 1–7. DOI: 10.1016/j.jtemb.2019.01.013
132. Leśnikowski Z.J. Recent developments with boron as a platform for novel drug design // Expert Opin Drug Discov. – 2016. – Vol. 11, No. 6. – P. 569–578. DOI: 10.1080/17460441.2016.1174687
133. Ali F., S Hosmane N., Zhu Y. Boron Chemistry for Medical Applications // Molecules. – 2020. – Vol. 25, No. 4. – P. 828. DOI: 10.3390/molecules25040828
134. Malouff T.D., Seneviratne D.S., Ebner D.K., Stross W.C., Waddle M.R., Trifiletti D.M., Krishnan S. Boron Neutron Capture Therapy: A Review of Clinical Applications // Front Oncol. – 2021. – Vol. 11. – P. 601820. DOI: 10.3389/fonc.2021.601820
135. Nedunchezhian K., Aswath N., Thiruppathy M., Thirugnanamurthy S. Boron Neutron Capture Therapy - A Literature Review // J Clin Diagn Res. – 2016. – Vol. 10, No. 12. – P. ZE01–ZE04. DOI: 10.7860/JCDR/2016/19890.9024
136. Barth R.F., Soloway A.H., Fairchild R.G., Brugger R.M. Boron neutron capture therapy for cancer. Realities and prospects // Cancer. – 1992. – Vol. 70, No. 12. – P. 2995–3007. DOI: 10.1002/1097-0142(19921215)70:12<2995::aid-cncr2820701243>3.0.co;2-#
137. Sauerwein W.A.G., Sancey L., Hey-Hawkins E., Kellert M., Panza L., Imperio D., Balcerzyk M., Rizzo G., Scalco E., Herrmann K., Mauri P., De Palma A., Wittig A. Theranostics in Boron Neutron Capture Therapy // Life (Basel). – 2021. – Vol. 11, No. 4. – P. 330. DOI: 10.3390/life11040330
138. Barth R.F., Zhang Z., Liu T. A realistic appraisal of boron neutron capture therapy as a cancer treatment modality // Cancer Commun (Lond). – 2018. – Vol. 38, No. 1. – P. 36. DOI: 10.1186/s40880-018-0280-5
139. Miyatake S.I., Kawabata S., Hiramatsu R., Kuroiwa T., Suzuki M., Ono K. Boron Neutron Capture Therapy of Malignant Gliomas // Prog Neurol Surg. – 2018. – Vol. 32. – P. 48–56. DOI: 10.1159/000469679
140. Yanagie H., Higashi S., Seguchi K., Ikushima I., Fujihara M., Nonaka Y., Oyama K., Maruyama S., Hatae R., Suzuki M., Masunaga S., Kinashi T., Sakurai Y., Tanaka H., Kondo N., Narabayashi M., Kajiyama T., Maruhashi A., Ono K., Nakajima J., Ono M., Takahashi H., Eriguchi M. Pilot clinical study of boron neutron capture therapy for recurrent hepatic cancer involving the intra-arterial injection of a (10)BSH-containing WOW emulsion // Appl Radiat Isot. – 2014. – Vol. 88. – P. 32–37. DOI: 10.1016/j.apradiso.2014.01.014
141. Koivunoro H., Kankaanranta L., Seppälä T., Haapaniemi A., Mäkitie A., Joensuu H. Boron neutron capture therapy for locally recurrent head and neck squamous cell carcinoma: An analysis of dose response and survival // Radiother Oncol. – 2019. – Vol. 137. – P. 153–158. DOI: 10.1016/j.radonc.2019.04.033
142. Cammarata F.P., Torrisi F., Vicario N., Bravatà V., Stefano A., Salvatorelli L., D'Aprile S., Giustetto P., Forte G.I., Minafra L., Calvaruso M., Richiusa S., Cirrone G.A.P., Petringa G., Broggi G., Cosentino S., Scopelliti F., Magro G., Porro D., Libra M., Ippolito M., Russo G., Parenti R., Cuttone G. Proton boron capture therapy (PBCT) induces cell death and mitophagy in a heterotopic glioblastoma model // Commun Biol. – 2023. – Vol. 6, No. 1. – P. 388. DOI: 10.1038/s42003-023-04770-w
143. Cirrone G.A.P., Manti L., Margarone D., Petringa G., Giuffrida L., Minopoli A., Picciotto A., Russo G., Cammarata F., Pisciotta P., Perozziello F.M., Romano F., Marchese V., Milluzzo G., Scuderi V., Cuttone G., Korn G. First experimental proof of Proton Boron Capture Therapy (PBCT) to enhance protontherapy effectiveness // Sci Rep. – 2018. – Vol. 8, No. 1. – P. 1141. DOI: 10.1038/s41598-018-19258-5
144. Tran N.H., Shtam T., Marchenko Y.Y., Konevega A.L., Lebedev D. Current State and Prospectives for Proton Boron Capture Therapy // Biomedicines. – 2023. – Vol. 11, No. 6. – P. 1727. DOI: 10.3390/biomedicines11061727
145. Bláha P., Feoli C., Agosteo S., Calvaruso M., Cammarata F.P., Catalano R., Ciocca M., Cirrone G.A.P., Conte V., Cuttone G., Facoetti A., Forte GI., Giuffrida L., Magro G., Margarone D., Minafra L., Petringa G., Pucci G., Ricciardi V., Rosa E., Russo G., Manti L. The Proton-Boron Reaction Increases the Radiobiological Effectiveness of Clinical Low- and High-Energy Proton Beams: Novel Experimental Evidence and Perspectives // Front Oncol. – 2021. – Vol. 11. – P. 682647. DOI: 10.3389/fonc.2021.682647
146. Ricciardi V., Bláha P., Buompane R., Crescente G., Cuttone G., Gialanella L., Michaličková K., Pacifico S., Porzio G., Manti L. A New Low-Energy Proton Irradiation Facility to Unveil the Mechanistic Basis of the Proton-Boron Capture Therapy Approach // Applied Sciences. – 2021. – Vol. 11, No. 24. – P. 11986. DOI: 10.3390/app112411986
147. Jelínek Michaelidesová A., Kundrát P., Zahradníček O., Danilová I., Pachnerová Brabcová K., Vachelová J., Vilimovský J., David M., Vondráček V., Davídková M. First independent validation of the proton-boron capture therapy concept // Sci Rep. – 2024. – Vol. 14, No. 1. – P. 19264. DOI: 10.1038/s41598-024-69370-y
148. Samoilov A.V., Ivakin V.A., Rumyantseva T.A., Galanin N.E. Synthesis and Photophysical Properties of a Binuclear Symmetrical Analog of BODIPY with Unconjugated Fluorophores // Russ J Gen Chem. – 2024. – Vol. 94. – P. 2824–2832. DOI: 10.1134/S1070363224110021
149. Spector V., Abramchuk D.S., Bykusov V.V., Zharova A.O., Egorova E.S., Voskresenskaya A.S., Olovyanishnikov A.R., Kuzmichev I.A., Bubley A.A., Antipin R.L., Beloglazkina E.K., Krasnovskaya O.O. BODIPY: synthesis, modification, and applications in sensing and biomedicine // Russ Chem Rev. – 2024. – Vol. 93, No. 10. – P. RCR5136. DOI: 10.59761/RCR5136
150. Aleksakhina E.L., Ivanova A.S., Pakhrova O.A., Tomilova I.K., Usoltsev S.D., Marfin Yu.S. BODIPY Fluorophores for Evaluating Coagulation Hemostasis Kinetics in Physiological and Pathological States // Russ J Gen Chem. – 2024. – Vol. 94. – P. 1855–1860. DOI: 10.1134/S1070363224070296
151. Franke J.M., Raliski B.K., Boggess S.C., Natesan D.V., Koretsky E.T., Zhang P., Kulkarni R.U., Deal P.E., Miller E.W. BODIPY Fluorophores for Membrane Potential Imaging // J Am Chem Soc. – 2019. – Vol. 141, No. 32. – P. 12824–12831. DOI: 10.1021/jacs.9b05912
152. Antina E., Bumagina N., Marfin Y., Guseva G., Nikitina L., Sbytov D., Telegin F. BODIPY Conjugates as Functional Compounds for Medical Diagnostics and Treatment // Molecules. – 2022. – Vol. 27, No. 4. – P. 1396. DOI: 10.3390/molecules27041396
153. Loudet A., Burgess K. BODIPY dyes and their derivatives: syntheses and spectroscopic properties // Chem Rev. – 2007. – Vol. 107, No. 11. – P. 4891–4932. DOI: 10.1021/cr078381n
154. Jang Y., Kim T.I., Kim H., Choi Y., Kim Y. Photoactivatable BODIPY Platform: Light-Triggered Anticancer Drug Release and Fluorescence Monitoring // ACS Appl Bio Mater. – 2019. – Vol. 2, No. 6. – P. 2567–2572. DOI: 10.1021/acsabm.9b00259
155. Wang R., Dong K., Xu G., Shi B., Zhu T., Shi P., Guo Z., Zhu W.H., Zhao C. Activatable near-infrared emission-guided on-demand administration of photodynamic anticancer therapy with a theranostic nanoprobe // Chem Sci. – 2019. – Vol. 10, No. 9. – P. 2785–2790. DOI: 10.1039/c8sc04854a
156. Mao Z., Kim J.H., Lee J., Xiong H., Zhang F., Kim J.S. Engineering of BODIPY-based theranostics for cancer therapy // Coordination Chemistry Reviews. – 2023. – Vol. 476. – P. 214908. DOI: 10.1016/j.ccr.2022.214908
157. Zhang J.B., Tong J., Sun D.Y., Fu J.T., Li D.J., Wang P. Targeting ferroptosis in cardio-metabolic-diseases: Mechanisms and therapeutic prospects // Med Res Rev. – 2023. – Vol. 43, No. 3. – P. 683–712. DOI: 10.1002/med.21934
158. Saraev D.D., Pratt D.A. Reactions of lipid hydroperoxides and how they may contribute to ferroptosis sensitivity // Curr Opin Chem Biol. – 2024. – Vol. 81. – P. 102478. DOI: 10.1016/j.cbpa.2024.102478
159. Jiang X., Stockwell B.R., Conrad M. Ferroptosis: mechanisms, biology and role in disease // Nat Rev Mol Cell Biol. – 2021. – Vol. 22, No. 4. – P. 266–282. DOI: 10.1038/s41580-020-00324-8
160. Feng S., Tang D., Wang Y., Li X., Bao H., Tang C., Dong X., Li X., Yang Q., Yan Y., Yin Z., Shang T., Zheng K., Huang X., Wei Z., Wang K., Qi S. The mechanism of ferroptosis and its related diseases // Mol Biomed. – 2023. – Vol. 4, No. 1. – P. 33. DOI: 10.1186/s43556-023-00142-2
161. Maru D., Hothi A., Bagariya C., Kumar A. Targeting Ferroptosis Pathways: A Novel Strategy for Cancer Therapy // Curr Cancer Drug Targets. – 2022. – Vol. 22, No. 3. – P. 234–244. DOI: 10.2174/1568009622666220211122745
162. Qi X., Wan Z., Jiang B., Ouyang Y., Feng W., Zhu H., Tan Y., He R., Xie L., Li Y. Inducing ferroptosis has the potential to overcome therapy resistance in breast cancer // Front Immunol. – 2022. – Vol. 13. – P. 1038225. DOI: 10.3389/fimmu.2022.1038225
163. Kar F., Hacioğlu C., Kaçar S. The dual role of boron in vitro neurotoxication of glioblastoma cells via SEMA3F/NRP2 and ferroptosis signaling pathways // Environ Toxicol. – 2023. – Vol. 38, No. 1. – P. 70–77. DOI: 10.1002/tox.23662
164. Li X., Wang X., Zhang J., Hanagata N., Wang X., Weng Q., Ito A., Bando Y., Golberg D. Hollow boron nitride nanospheres as boron reservoir for prostate cancer treatment // Nat Commun. – 2017. – Vol. 8. – P. 13936. DOI: 10.1038/ncomms13936
165. Corti A., Dominici S., Piaggi S., Pompella A. Enhancement of ferroptosis by boric acid and its potential use as chemosensitizer in anticancer chemotherapy // Biofactors. – 2023. – Vol. 49, No. 2. – P. 405–414. DOI: 10.1002/biof.1919
166. Hammond Quarcoo F., Appiah Kusi G., Fouemina C.N.J. Nanoparticle-induced Ferroptosis for Cancer Therapy // International Journal of Biological, Physical and Chemical Studies. – 2022. – Vol. 4, No. 2. – P. 30–42. DOI: 10.32996/ijbpcs.2022.4.2.4
167. Arfin S., Jha N.K., Jha S.K., Kesari K.K., Ruokolainen J., Roychoudhury S., Rathi B., Kumar D. Oxidative Stress in Cancer Cell Metabolism // Antioxidants (Basel). – 2021. – Vol. 10, No. 5. – P. 642. DOI: 10.3390/antiox10050642
168. Hunt C.D., Idso J.P. Dietary boron as a physiological regulator of the normal inflammatory response: A review and current research progress // J Trace Elem Exp Med. – 1999. – Vol. 12. – P. 221–233. DOI: 10.1002/(SICI)1520-670X(1999)12:3<221::AID-JTRA6>3.0.CO;2-X
169. Paties Montagner G., Dominici S., Piaggi S., Pompella A., Corti A. Redox Mechanisms Underlying the Cytostatic Effects of Boric Acid on Cancer Cells—An Issue Still Open // Antioxidants. – 2023. – Vol. 12, No. 6. – P. 1302. DOI: 10.3390/antiox12061302
170. Ke K., Li L., Lu C., Zhu Q., Wang Y., Mou Y., Wang H., Jin W. The crosstalk effect between ferrous and other ions metabolism in ferroptosis for therapy of cancer // Front Oncol. – 2022. – Vol. 12. – P. 916082. DOI: 10.3389/fonc.2022.916082
171. Forman H.J., Zhang H. Targeting oxidative stress in disease: promise and limitations of antioxidant therapy // Nat Rev Drug Discov. – 2021. – Vol. 20, No. 9. – P. 689–709. DOI: 10.1038/s41573-021-00233-1. Erratum in: Nat Rev Drug Discov. – 2021. – Vol. 20, No. 8. – P. 652. DOI: 10.1038/s41573-021-00267-5
172. Ageeva N.M., Markosov V.A., Muzychenko G.F., Bessonov V.V., Khanferyan R.A. Antioxidant and antiradical properties of red grape wines // Problems of Nutrition. – 2015. – Vol. 84, No. 2. – P. 63–67. EDN: XCEXGB
173. Liu Z., Ren Z., Zhang J., Chuang C.C., Kandaswamy E., Zhou T., Zuo L. Role of ROS and Nutritional Antioxidants in Human Diseases // Front Physiol. – 2018. – Vol. 9. – P. 477. DOI: 10.3389/fphys.2018.00477
174. Yunusoğlu O., Ayaz İ., Dovankaya E.H. Pharmacological, medicinal and biological properties of flavonoids: A comprehensive review // Journal of Research in Pharmacy. – 2025. – Vol. 29, No. 2. – P. 561–584. DOI: 10.12991/jrespharm.1661054
175. Misrani A., Tabassum S., Yang L. Mitochondrial Dysfunction and Oxidative Stress in Alzheimer's Disease // Front Aging Neurosci. – 2021. – Vol. 13. – P. 617588. DOI: 10.3389/fnagi.2021.617588
176. Riaz M., Yan L., Wu X., Hussain S., Aziz O., Wang Y., Imran M., Jiang C. Boron alleviates the aluminum toxicity in trifoliate orange by regulating antioxidant defense system and reducing root cell injury // J Environ Manage. – 2018. – Vol. 208. – P. 149–158. DOI: 10.1016/j.jenvman.2017.12.008
177. Jackson D.G., Cardwell L.A., Oussedik E., Feldman S.R. Utility of boron in dermatology // J Dermatolog Treat. – 2020. – Vol. 31, No. 1. – P. 2–12. DOI: 10.1080/09546634.2017.1363850
178. Turkez H., Yıldırım S., Sahin E., Arslan M.E., Emsen B., Tozlu O.O., Alak G., Ucar A., Tatar A., Hacimuftuoglu A., Keles M.S., Geyikoglu F., Atamanalp M., Saruhan F., Mardinoglu A. Boron Compounds Exhibit Protective Effects against Aluminum-Induced Neurotoxicity and Genotoxicity: In Vitro and In Vivo Study // Toxics. – 2022. – Vol. 10, No. 8. – P. 428. DOI: 10.3390/toxics10080428
179. Arslan-Acaroz D., Bayşu-Sozbilir N. Ameliorative effect of boric acid against formaldehyde-induced oxidative stress in A549 cell lines // Environ Sci Pollut Res Int. – 2020. – Vol. 27, No. 4. – P. 4067–4074. DOI: 10.1007/s11356-019-06986-y
180. Sogut I., Oglakci A., Kartkaya K., Ol K.K., Sogut M.S., Kanbak G., Inal M.E. Effect of boric acid on oxidative stress in rats with fetal alcohol syndrome // Exp Ther Med. – 2015. – Vol. 9, No. 3. – P. 1023–1027. DOI: 10.3892/etm.2014.2164
181. Gündüz M.K., Bolat M., Kaymak G., Berikten D., Köse DA. Therapeutic Effects of Newly Synthesized Boron Compounds (BGM and BGD) on Hepatocellular Carcinoma // Biol Trace Elem Res. – 2022. – Vol. 200, No. 1. – P. 134–146. DOI: 10.1007/s12011-021-02647-9
182. Ince S., Kucukkurt I., Demirel H.H., Acaroz D.A., Akbel E., Cigerci I.H. Protective effects of boron on cyclophosphamide induced lipid peroxidation and genotoxicity in rats // Chemosphere. – 2014. – Vol. 108. – P. 197–204. DOI: 10.1016/j.chemosphere.2014.01.038
183. Kucukkurt I., Ince S., Demirel H.H., Turkmen R., Akbel E., Celik Y. The Effects of Boron on Arsenic-Induced Lipid Peroxidation and Antioxidant Status in Male and Female Rats // J Biochem Mol Toxicol. – 2015. – Vol. 29, No. 12. – P. 564–571. DOI: 10.1002/jbt.21729
184. Kızılay Z., Erken H.A., Çetin N.K., Aktaş S., Abas B.İ., Yılmaz A. Boric acid reduces axonal and myelin damage in experimental sciatic nerve injury // Neural Regen Res. – 2016. – Vol. 11, No. 10. – P. 1660–1665. DOI: 10.4103/1673-5374.193247
185. Frei A., Verderosa A.D., Elliott A.G., Zuegg J., Blaskovich M.A.T. Metals to combat antimicrobial resistance // Nat Rev Chem. – 2023. – Vol. 7, No. 3. – P. 202–224. DOI: 10.1038/s41570-023-00463-4
186. Hu Z.X., Zhang J., Zhang T., Tian C.Y., An Q., Yi P., Yuan C.M., Zhang Z.K., Zhao L.H., Hao X.J. Aloperine-Type Alkaloids with Antiviral and Antifungal Activities from the Seeds of Sophora alopecuroides L. // J Agric Food Chem. – 2024. – Vol. 72, No. 14. – P. 8225–8236. DOI: 10.1021/acs.jafc.4c00992
187. Sayin Z., Ucan U.S., Sakmanoglu A. Antibacterial and Antibiofilm Effects of Boron on Different Bacteria // Biol Trace Elem Res. – 2016. – Vol. 173, No. 1. – P. 241–246. DOI: 10.1007/s12011-016-0637-z
188. Celebı D., Celebı O., Aydin E., Baser S., Güler M.C., Yildirim S., Taghizadehghalehjoughi A. Boron Compound-Based Treatments Against Multidrug-Resistant Bacterial Infections in Lung Cancer In Vitro Model // Biol Trace Elem Res. – 2024. – Vol. 202, No. 1. – P. 145–160. DOI: 10.1007/s12011-023-03912-9
189. Uzun Yaylacı E. Antibacterial Effects of Boric Acid Against Aquatic Pathogens // Journal of Anatolian Environmental and Animal Sciences. – 2021. – Vol. 6, No. 2. – P. 240–244. DOI: 10.35229/jaes.881144
190. Hernandez-Patlan D., Solis-Cruz B., Latorre J.D., Maguey-Gonzalez J.A., Castellanos-Huerta I., Beyssac E., Garrait G., Vázquez-Durán A., López-Arellano R., Méndez-Albores A., Hargis B.M., Tellez-Isaias G. Evaluation of the Antimicrobial Activity of a Formulation Containing Ascorbic Acid and Eudragit FS 30D Microparticles for the Controlled Release of a Curcumin-Boric Acid Solid Dispersion in Turkey Poults Infected with Salmonella enteritidis: A Therapeutic Model // Int J Mol Sci. 2023;24(22):16186. DOI: 10.3390/ijms242216186
191. Brittingham A., Wilson W.A. The antimicrobial effect of boric acid on Trichomonas vaginalis // Sex Transm Dis. – 2014. – Vol. 41, No. 12. – P. 718–722. DOI: 10.1097/OLQ.0000000000000203
192. Trippier P.C., McGuigan C. Boronic acids in medicinal chemistry: anticancer, antibacterial and antiviral applications // Med Chem Commun. – 2010. – Vol. 1. – P. 183–198. DOI: 10.1039/C0MD00119H
193. Schelenz S. Management of candidiasis in the intensive care unit // J Antimicrob Chemother. – 2008. – Vol. 61 Suppl 1. – P. i31–4. DOI: 10.1093/jac/dkm430
194. Talapko J., Juzbašić M., Matijević T., Pustijanac E., Bekić S., Kotris I., Škrlec I. Candida albicans-The Virulence Factors and Clinical Manifestations of Infection // J Fungi (Basel). – 2021. – Vol. 7, No. 2. – P. 79. DOI: 10.3390/jof7020079
195. Çelikezen FÇ., İ. Şahin H. Investigation of Antimicrobial and Antifungal Effects of Some Boron Compounds // Bitlis Eren Üniversitesi Fen Bilimleri Dergisi. – 2023. – Vol. 12, No. 3. – P. 591–595. DOI: 10.17798/bitlisfen.1197472
196. Van Slyke K.K., Michel V.P., Rein M.F. Treatment of vulvovaginal candidiasis with boric acid powder // Am J Obstet Gynecol. – 1981. – Vol. 141, No. 2. – P. 145–148. DOI: 10.1016/s0002-9378(16)32581-9
197. De Seta F., Schmidt M., Vu B., Essmann M., Larsen B. Antifungal mechanisms supporting boric acid therapy of Candida vaginitis // J Antimicrob Chemother. – 2009. – Vol. 63, No. 2. – P. 325–336. DOI: 10.1093/jac/dkn486
198. Pointer B.R., Boyer M.P., Schmidt M. Boric acid destabilizes the hyphal cytoskeleton and inhibits invasive growth of Candida albicans // Yeast. – 2015. – Vol. 32, No. 4. – P. 389–398. DOI: 10.1002/yea.3066
199. Larsen B., Petrovic M., De Seta F. Boric Acid and Commercial Organoboron Products as Inhibitors of Drug-Resistant Candida albicans // Mycopathologia. – 2018. – Vol. 183, No. 2. – P. 349–357. DOI: 10.1007/s11046-017-0209-6
200. Orak F., Nazik H., Yalcinkaya KT., Gundes A., Doganer A., Nazik S., Mulayim MK., Ozturk P. Antifungal efficacy of pure boron on yeast and mold isolates causing superficial mycosis // J Pak Med Assoc. – 2022. – Vol. 72, No. 7. – P. 1330–1334. DOI: 10.47391/JPMA.2219
201. Nemyatykh O.D., Maistrenko M.A., Demchenko D.D., Narkevich I.A., Okovityi S.V., Timchenko V.N. Principles of Rational COVID-19 Therapy in Pediatrics // J Clin Med. – 2023. – Vol. 12, No. 14. – P. 4731. DOI: 10.3390/jcm12144731
202. Stebbing J., Phelan A., Griffin I., Tucker C., Oechsle O., Smith D., Richardson P. COVID-19: combining antiviral and anti-inflammatory treatments // Lancet Infect Dis. – 2020. – Vol. 20, No. 4. – P. 400–402. DOI: 10.1016/S1473-3099, No. – 20)30132-8
203. Sarkar C., Mondal M., Torequl Islam M., Martorell M., Docea AO., Maroyi A., Sharifi-Rad J., Calina D. Potential Therapeutic Options for COVID-19: Current Status, Challenges, and Future Perspectives. Front Pharmacol. – 2020. – Vol. 11. – P. 572870. DOI: 10.3389/fphar.2020.572870
204. Akbari N., Ostadrahimi A., Tutunchi H., Pourmoradian S., Farrin N., Najafipour F., Soleimanzadeh H., Kafil B., Mobasseri M. Possible therapeutic effects of boron citrate and oleoylethanolamide supplementation in patients with COVID-19: A pilot randomized, double-blind, clinical trial // J Trace Elem Med Biol. – 2022. – Vol. 71. – P. 126945. DOI: 10.1016/j.jtemb.2022.126945
205. Wanninger S., Lorenz V., Subhanb A., Edelmann F.T. Metal complexes of curcumin – synthetic strategies, structures and medicinal applications // Chem Soc Rev. – 2015. – Vol. 44. – P. 4986–5002. DOI: 10.1039/C5CS00088B
206. Bellamy L.J., Spicer G.S., Strickland J.D.H. Compounds of curcumin and boric acid. Part III. Infra-red studies of rosocyanin and allied compounds // J Chem Soc. – 1952. – P. 4653–4656. DOI: 10.1039/JR9520004653
207. Sui Z., Salto R., Li J., Craik C., Ortiz de Montellano P.R. Inhibition of the HIV-1 and HIV-2 proteases by curcumin and curcumin boron complexes // Bioorg Med Chem. – 1993. – Vol. 1, No. 6. – P. 415–422. DOI: 10.1016/s0968-0896(00)82152-5
208. Scorei IR., Biţă A., Mogoşanu G.D. Letter to the Editor: Boron enhances the antiviral activity of the curcumin against SARS-CoV-2 // Rom J Morphol Embryol. – 2020. – Vol. 61, No. 3. – P. 967–970. DOI: 10.47162/RJME.61.3.39
209. Vega Valdez I.R., Santiago-Quintana J.M., Rosalez M., Farfan E., Soriano-Ursua M.A. Theoretical Evaluation of Bortezomib and Other Boron-Containing Compounds as Inhibitors of SARS-CoV-2 Main Protease // ChemRxiv. – 2020. DOI: 10.26434/chemrxiv.12047346.v1
210. Cetiner E., Sayin K., Tuzun B., Ataseven H. Could boron-containing compounds , No. BCCs) be effective against SARS-CoV-2 as anti-viral agent? // Bratisl Lek Listy. – 2021. – Vol. 122, No. 4. – P. 263–269. DOI: 10.4149/BLL_2021_044
211. Momčilović S., Cantacessi C., Arsić-Arsenijević V., Otranto D., Tasić-Otašević S. Rapid diagnosis of parasitic diseases: current scenario and future needs // Clin Microbiol Infect. – 2019. – Vol. 25, No. 3. – P. 290–309. DOI: 10.1016/j.cmi.2018.04.028
212. Thorley N., Ross J. Intravaginal boric acid: is it an alternative therapeutic option for vaginal trichomoniasis? // Sex Transm Infect. – 2018. – Vol. 94, No. 8. – P. 574–577. DOI: 10.1136/sextrans-2017-053343
213. Ugwu D.I., Eze F.U., Ezeorah C.J., Rhyman L., Ramasami P., Tania G., Eze C.C., Uzoewulu C.P., Ogboo B.C., Okpareke O.C. Synthesis, structure, hirshfeld surface analysis, non-covalent interaction, and in silico studies of 4-hydroxy-1-[(4-nitrophenyl)sulphonyl]pyrrolidine-2-carboxyllic acid // Research Square. – 2022. DOI: 10.21203/rs.3.rs-2217367/v1
214. Mahmoud A., Zerhouni E. Neglected tropical diseases: moving beyond mass drug treatment to understanding the science. Health Aff (Millwood). – 2009. – Vol. 28, No. 6. – P. 1726–1733. DOI: 10.1377/hlthaff.28.6.1726
215. Croft S.L. Neglected diseases: progress in drug development // Curr Opin Investig Drugs. – 2007. – Vol. 8, No. 2. – P. 103–104.
216. Renslo A.R., McKerrow J.H. Drug discovery and development for neglected parasitic diseases // Nat Chem Biol. – 2006. – Vol. 2, No. 12. – P. 701–710. DOI: 10.1038/nchembio837
217. Jacobs R.T., Plattner J.J., Keenan M. Boron-based drugs as antiprotozoals // Curr Opin Infect Dis. – 2011. – Vol. 24, No. 6. – P. 586–592. DOI: 10.1097/QCO.0b013e32834c630e
218. Lindenthal C., Weich N., Chia Y.S., Heussler V., Klinkert M.Q. The proteasome inhibitor MLN-273 blocks exoerythrocytic and erythrocytic development of Plasmodium parasites // Parasitology. – 2005. – Vol. 131, Pt 1. – P. 37–44. DOI: 10.1017/s003118200500747x
219. Reynolds J.M., El Bissati K., Brandenburg J., Günzl A., Mamoun C.B. Antimalarial activity of the anticancer and proteasome inhibitor bortezomib and its analog ZL3B // BMC Clin Pharmacol. – 2007. – Vol. 7. – P. 13. DOI: 10.1186/1472-6904-7-13
220. Sørensen T.I.A., Martinez A.R., Jørgensen T.S.H. Epidemiology of Obesity // Handb Exp Pharmacol. – 2022. – Vol. 274. – P. 3–27. DOI: 10.1007/164_2022_581
221. Yunusoglu O., Türkmen Ö., Berkoz M., Yıldırım M., Yalın S. In Vitro Anti-Obesity Effect of Aloe vera Extract Through Transcription Factors and LipolysisAssociated Genes // East J Med. – 2022. – Vol. 27, No. 4. – P. 519–528. DOI: 10.5505/ejm.2022.13285
222. Doğan A., Demirci S., Apdik H., Bayrak O.F., Gulluoglu S., Tuysuz E.C., Gusev O., Rizvanov A.A., Nikerel E., Şahin F. A new hope for obesity management: Boron inhibits adipogenesis in progenitor cells through the Wnt/β-catenin pathway // Metabolism. – 2017. – Vol. 69. – P. 130–142. DOI: 10.1016/j.metabol.2017.01.021
223. Aysan E., Sahin F., Telci D., Yalvac M.E., Emre S.H., Karaca C., Muslumanoglu M. Body weight reducing effect of oral boric acid intake // Int J Med Sci. – 2011. – Vol. 8, No. 8. – P. 653–658. DOI: 10.7150/ijms.8.653
224. Farrin N., Rezazadeh L., Pourmoradian S., Attari V.E., Tutunchi H., Zarezadeh M., Najafipour F., Ostadrahimi A. Boron compound administration; A novel agent in weight management: A systematic review and meta-analysis of animal studies // J Trace Elem Med Biol. – 2022. – Vol. 72. – P. 126969. DOI: 10.1016/j.jtemb.2022.126969
225. Saeedi P., Petersohn I., Salpea P., Malanda B., Karuranga S., Unwin N., Colagiuri S., Guariguata L., Motala A.A., Ogurtsova K., Shaw J.E., Bright D., Williams R; IDF Diabetes Atlas Committee. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition // Diabetes Res Clin Pract. – 2019. – Vol. 157. – P. 107843. DOI: 10.1016/j.diabres.2019.107843
226. Weyer C., Bogardus C., Mott D.M., Pratley R.E. The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus // J Clin Invest. – 1999. – Vol. 104, No. 6. – P. 787–794. DOI: 10.1172/JCI7231
227. Cakir S., Eren M., Senturk M., Sarica Z.S. The Effect of Boron on Some Biochemical Parameters in Experimental Diabetic Rats // Biol Trace Elem Res. – 2018. – Vol. 184, No. 1. – P. 165–172. DOI: 10.1007/s12011-017-1182-0
228. Çakir S. Effect of Boric Acid on Metabolic Peptides and Some Biochemical Parameters in Experimental Diabetic Rats // Biol Trace Elem Res. – 2024. – Vol. 202, No. 3. – P. 1001–1008. DOI: 10.1007/s12011-023-03910-x. Epub 2023 Oct 23. Erratum in: Biol Trace Elem Res. – 2024. – Vol. 202, No. 8. – P. 3868–3869. DOI: 10.1007/s12011-023-03944-1
229. Jin E., Li S., Ren M., Hu Q., Gu Y., Li K. Boron Affects Immune Function Through Modulation of Splenic T Lymphocyte Subsets, Cytokine Secretion, and Lymphocyte Proliferation and Apoptosis in Rats // Biol Trace Elem Res. – 2017. – Vol. 178, No. 2. – P. 261–275. DOI: 10.1007/s12011-017-0932-3
230. Romero-Aguilar K.S., Arciniega-Martínez I.M., Farfán-García E.D., Campos-Rodríguez R., Reséndiz-Albor A.A., Soriano-Ursúa M.A. Effects of boron-containing compounds on immune responses: review and patenting trends // Expert Opin Ther Pat. – 2019. – Vol. 29, No. 5. – P. 339–351. DOI: 10.1080/13543776.2019.1612368
231. DeFrancesco H., Dudley J., Coca A. Boron Chemistry: An Overview // ACS Symposium Series. – 2016. – Vol. 1236. – P. 1–25. DOI: 10.1021/bk-2016-1236.ch001
232. Abdelnour S.A., Abd El-Hack M.E., Swelum A.A., Perillo A., Losacco C. The vital roles of boron in animal health and production: A comprehensive review // J Trace Elem Med Biol. – 2018. – Vol. 50. – P. 296–304. DOI: 10.1016/j.jtemb.2018.07.018
233. Bhasker T.V., Gowda N.K., Mondal S., Krishnamoorthy P., Pal D.T., Mor A., Bhat S.K., Pattanaik A.K. Boron influences immune and antioxidant responses by modulating hepatic superoxide dismutase activity under calcium deficit abiotic stress in Wistar rats // J Trace Elem Med Biol. – 2016. – Vol. 36. – P. 73–79. DOI: 10.1016/j.jtemb.2016.04.007
234. Routray I., Ali S. Boron Induces Lymphocyte Proliferation and Modulates the Priming Effects of Lipopolysaccharide on Macrophages // PLoS One. – 2016. – Vol. 11, No. 3. – P. e0150607. DOI: 10.1371/journal.pone.0150607
235. Asadi R., Raouf Sarshoori J., Ghorbani M., Mofid M. Evaluation of the Effect of Boron on Histopathological Changes of Atherosclerotic Plaque in Aortic Arch and Lipid Profiles in Hyperlipidemic New Zealand Male Rabbits // J Adv Med Biomed Res. – 2023. – Vol. 31, No. 145. – P. 197–203. DOI: 10.30699/jambs.31.145.197
236. Yang H.Y., Liu M.L., Luo P., Yao X.S., Zhou H. Network pharmacology provides a systematic approach to understanding the treatment of ischemic heart diseases with traditional Chinese medicine // Phytomedicine. – 2022. – Vol. 104. – P. 154268. DOI: 10.1016/j.phymed.2022.154268
237. Bittencourt M.S., Cerci R.J. Statin effects on atherosclerotic plaques: regression or healing? // BMC Med. – 2015. – Vol. 13. – P. 260. DOI: 10.1186/s12916-015-0499-9
238. Toledo-Ibelles P., Mas-Oliva J. Antioxidants in the Fight Against Atherosclerosis: Is This a Dead End? // Curr Atheroscler Rep. – 2018. – Vol. 20, No. 7. – P. 36. DOI: 10.1007/s11883-018-0737-7
239. Donoiu I., Militaru C., Obleagă O., Hunter J.M., Neamţu J., Biţă A., Scorei I.R., Rogoveanu O.C. Effects of boron-containing compounds on cardiovascular disease risk factors - A review // J Trace Elem Med Biol. – 2018. – Vol. 50. – P. 47–56. DOI: 10.1016/j.jtemb.2018.06.003
240. Coban F.K., Ince S., Kucukkurt I., Demirel H.H., Hazman O. Boron attenuates malathion-induced oxidative stress and acetylcholinesterase inhibition in rats // Drug Chem Toxicol. – 2015. – Vol. 38, No. 4. – P. 391–399. DOI: 10.3109/01480545.2014.974109
241. Coban F.K., Liman R., Cigerci I.H., Ince S., Hazman OBozkurt M.F. The antioxidant effect of boron on oxidative stress and DNA damage in diabetic rats // J Fresenius Environ Bull. – 2015. – Vol. 24, No. 11. – P. 4059–4066.
242. Zafar H., Ali S. Boron inhibits the proliferating cell nuclear antigen index, molybdenum containing proteins and ameliorates oxidative stress in hepatocellular carcinoma // Arch Biochem Biophys. – 2013. – Vol. 529, No. 2. – P. 66–74. DOI: 10.1016/j.abb.2012.11.008
243. Sen C.K. Human Wound and Its Burden: Updated 2020 Compendium of Estimates // Adv Wound Care (New Rochelle). – 2021. – Vol. 10, No. 5. – P. 281–292. DOI: 10.1089/wound.2021.0026
244. Frykberg R.G., Banks J. Challenges in the Treatment of Chronic Wounds // Adv Wound Care (New Rochelle). – 2015. – Vol. 4, No. 9. – P. 560–582. DOI: 10.1089/wound.2015.0635
245. Tang N., Zhang R., Zheng Y., Wang J., Khatib M., Jiang X., Zhou C., Omar R., Saliba W., Wu W., Yuan M., Cui D., Haick H. Highly Efficient Self-Healing Multifunctional Dressing with Antibacterial Activity for Sutureless Wound Closure and Infected Wound Monitoring // Adv Mater. – 2022. – Vol. 34, No. 3. – P. e2106842. DOI: 10.1002/adma.202106842
246. Şahin F., Pirouzpanah M.B., Farshbaf-Khalili A., Ayşan E., Doğan A., Demirci S., Ostadrahimi A., Mobasseri M. The effect of the boron-based gel on the treatment of diabetic foot ulcers: A prospective, randomized controlled trial // J Trace Elem Med Biol. – 2023. – Vol. 79. – P. 127261. DOI: 10.1016/j.jtemb.2023.127261
247. Doğan A., Demirci S., Cağlayan AB., Kılıç E., Günal MY., Uslu U., Cumbul A., Sahin F. Sodium pentaborate pentahydrate and pluronic containing hydrogel increases cutaneous wound healing in vitro and in vivo // Biol Trace Elem Res. – 2014. – Vol. 162, No. 1-3. – P. 72–79. DOI: 10.1007/s12011-014-0104-7
248. Benderdour M., Van Bui T., Hess K., Dicko A., Belleville F., Dousset B. Effects of boron derivatives on extracellular matrix formation // J Trace Elem Med Biol. – 2000. – Vol. 14, No. 3. – P. 168–173. DOI: 10.1016/S0946-672X(00)80006-1
249. Roy N., Saha N., Kitano T., Saha P. Development and Characterization of Novel Medicated Hydrogels for Wound Dressing // Soft Materials. – 2010. – Vol. 8, No. 2. – P. 130–148. DOI: 10.1080/15394451003756282
250. Demirci S., Doğan A., Aydın S., Dülger E.Ç., Şahin F. Boron promotes streptozotocin-induced diabetic wound healing: roles in cell proliferation and migration, growth factor expression, and inflammation // Mol Cell Biochem. – 2016. – Vol. 417, No. 1-2. – P. 119–133. DOI: 10.1007/s11010-016-2719-9
251. Shimikore S.S., Pawar Gaurav B. A Randomized Controlled Trial to Compare Efficacy of Collagen Granule-Based Dressing versus Conventional Dressing in the Management of Diabetic Foot Ulcers // Archives of Medicine and Health Sciences. – 2018. – Vol. 6, No. 1. – P. 28–31. DOI: 10.4103/amhs.amhs_30_17
252. Kırbaş O.K., Bozkurt B.T., Taşlı P.N., Hayal T.B., Özkan İ., Bülbül B., Beyaz S., Şahin F. Effective Scarless Wound Healing Mediated by Erbium Borate Nanoparticles // Biol Trace Elem Res. – 2021. – Vol. 199, No. 9. – P. 3262–3271. DOI: 10.1007/s12011-020-02458-4
253. Kurtoğlu A.H., Karataş A. Current approaches to wound therapy: modern wound dressings // J Fac Pharm Ankara. – 2009. – Vol. 38, No. 3. – P. 211–232. DOI: 10.1501/Eczfak_0000000562
254. Chupakhin O.N., Khonina T.G., Kungurov N.V., Zilberberg N.V., Evstigneeva N.P., Kokhan M.M., Polishchuk A.I., Shadrina E.V., Larchenko E.Yu., Larionov L.P., Karabanalov M.S. Silicon–boron-containing glycerohydrogel having wound healing, regenerative, and antimicrobial activity // Russ Chem Bull. – 2017. – Vol. 66. – P. 558–563. DOI: 10.1007/s11172-017-1771-2
255. Nzietchueng R.M., Dousset B., Franck P., Benderdour M., Nabet P., Hess K. Mechanisms implicated in the effects of boron on wound healing // J Trace Elem Med Biol. – 2002. – Vol. 16, No. 4. – P. 239–244. DOI: 10.1016/S0946-672X(02)80051-7
256. Sedighi-Pirsaraei N., Tamimi A., Sadeghi Khamaneh F., Dadras-Jeddi S., Javaheri N. Boron in wound healing: a comprehensive investigation of its diverse mechanisms // Front Bioeng Biotechnol. – 2024. – Vol. 12. – P. 1475584. DOI: 10.3389/fbioe.2024.1475584
257. Behera S.S., Pramanik K., Nayak M.K. Recent Advancement in the Treatment of Cardiovascular Diseases: Conventional Therapy to Nanotechnology // Curr Pharm Des. – 2015. – Vol. 21, No. 30. – P. 4479–4497. DOI: 10.2174/1381612821666150817104635
258. Miljkovic D., Scorei R.I., Cimpoiaşu V.M., Scorei I.D. Calcium fructoborate: plant-based dietary boron for human nutrition // J Diet Suppl. – 2009. – Vol. 6, No. 3. – P. 211–226. DOI: 10.1080/19390210903070772
259. Shrivastava A.K., Singh H.V., Raizada A., Singh S.K. C-reactive protein, inflammation and coronary heart disease // Egypt Heart J. – 2015. – Vol. 94, No. 2. – P. 89–97. DOI: 10.1016/j.ehj.2014.11.005
260. Nielsen F.H. Historical and recent aspects of boron in human and animal health // J Boron. – 2017. – Vol. 2, No. 3. – P. 153–160.
261. Karimkhani H., Özkoç M., Shojaolsadati P., Uzuner K., Donmez D.B., Kanbak G. Protective Effect of Boric Acid and Omega-3 on Myocardial Infarction in an Experimental Rat Model // Biol Trace Elem Res. – 2021. – Vol. 199, No. 7. – P. 2612–2620. DOI: 10.1007/s12011-020-02360-z
262. Bouchareb R., Katz M., Saadallah N., Sassi Y., Ali S., Lebeche D. Boron improves cardiac contractility and fibrotic remodeling following myocardial infarction injury // Sci Rep. – 2020. – Vol. 10, No. 1. – P. 17138. DOI: 10.1038/s41598-020-73864-w
263. Devarbhavi H., Asrani S.K., Arab J.P., Nartey Y.A., Pose E., Kamath P.S. Global burden of liver disease: 2023 update // J Hepatol. – 2023. – Vol. 79, No. 2. – P. 516–537. DOI: 10.1016/j.jhep.2023.03.017
264. Berköz M., Aslan A., Yunusoğlu O., Krośniak M., Francik R. Hepatoprotective potentials of Usnea longissima Ach. and Xanthoparmelia somloensis (Gyelnik) Hale extracts in ethanol-induced liver injury // Drug Chem Toxicol. – 2025. – Vol. 48, No. 1. – P. 136–149. DOI: 10.1080/01480545.2024.2407867
265. Wang R., Kong J., Wang D., Lien L.L., Lien E.J. A survey of Chinese herbal ingredients with liver protection activities // Chin Med. – 2007. – Vol. 2. – P. 5. DOI: 10.1186/1749-8546-2-5
266. Kabu M., Uyarlar C., Żarczyńska K., Milewska W., Sobiech P. The role of boron in animal health // J Elem 2015. – Vol. 20, No. 2. – P. 535–541. DOI: 10.5601/jelem.2014.19.3.706
267. Abdik H., Cumbul A., Hayal T.B., Avşar Abdik E., Taşlı P.N., Kırbaş O.K., Baban D., Şahin F. Sodium Pentaborate Pentahydrate ameliorates lipid accumulation and pathological damage caused by high fat diet induced obesity in BALB/c mice // J Trace Elem Med Biol. – 2021. – Vol. 66. – P. 126736. DOI: 10.1016/j.jtemb.2021
268. Şahin E., Orhan C., Erten F., Şahin F., Şahin N., Şahin K. The effect of different boron compounds on nutrient digestibility, intestinal nutrient transporters, and liver lipid metabolism // Turk J Med Sci. – 2023. – Vol. 53, No. 3. – P. 619–629. DOI: 10.55730/1300-0144.5624
269. Kucukkurt I., Ince S., Eryavuz A., Demirel H.H., Arslan-Acaroz D., Zemheri-Navruz F., Durmus I. The effects of boron-supplemented diets on adipogenesis-related gene expressions, anti-inflammatory, and antioxidative response in high-fat fed rats // J Biochem Mol Toxicol. – 2023. – Vol. 37, No. 2. – P. e23257. DOI: 10.1002/jbt.23257
270. Bhushan B., Apte U. Liver Regeneration after Acetaminophen Hepatotoxicity: Mechanisms and Therapeutic Opportunities // Am J Pathol. – 2019. – Vol. 189, No. 4. – P. 719–729. DOI: 10.1016/j.ajpath.2018.12.006
271. Çelik M., Aydın P. 4-hidroksifenilboronik asitin HEPG2 hücre hattında asetaminofen ile indüklenen karaciğer hücre hasarı üzerine etkisinin araştırılması // J Boron. – 2022. – Vol. 7, No. 3. – P. 507–513. DOI: 10.30728/boron.1079589
272. Olufunmilayo E.O., Gerke-Duncan M.B., Holsinger R.M.D. Oxidative Stress and Antioxidants in Neurodegenerative Disorders // Antioxidants (Basel). – 2023. – Vol. 12, No. 2. – P. 517. DOI: 10.3390/antiox12020517
273. Pizzorno L. Nothing Boring About Boron. Integr Med (Encinitas). – 2015. – Vol. 14, No. 4. – P. 35–48.
274. Nakmode D.D., Day C.M., Song Y., Garg S. The Management of Parkinson's Disease: An Overview of the Current Advancements in Drug Delivery Systems // Pharmaceutics. – 2023. – Vol. 15, No. 5. – P. 1503. DOI: 10.3390/pharmaceutics15051503
275. Yang P., Liu Y., Tong Z.W., Huang Q.H., Xie X.H., Mao S.Y., Ding J.H., Lu M., Tan R.X., Hu G. The marine-derived compound TAG alleviates Parkinson's disease by restoring RUBCN-mediated lipid metabolism homeostasis // Acta Pharmacol Sin. – 2024. – Vol. 45, No. 7. – P. 1366–1380. DOI: 10.1038/s41401-024-01259-y
276. Ozdemir H.S., Yunusoglu O., Sagmanligil V., Yasar S., Colcimen N., Goceroglu R., Catalkaya E. Investigation of the pharmacological, behavioral, and biochemical effects of boron in parkinson-indicated rats: Effects of Boron on Rotenone-Induced Parkinson’s Disease // Cellular and Molecular Biology. – 2022. – Vol. 68, No. 8. – P. 13–21. DOI: 10.14715/cmb/2022.68.8.3
277. Küçükdoğru R., Türkez H., Arslan M.E., Tozlu ÖÖ., Sönmez E., Mardinoğlu A., Cacciatore I., Di Stefano A. Neuroprotective effects of boron nitride nanoparticles in the experimental Parkinson's disease model against MPP+ induced apoptosis // Metab Brain Dis. – 2020. – Vol. 35, No. 6. – P. 947–957. DOI: 10.1007/s11011-020-00559-6
278. Yavuz E., Çevik G., Çevreli B., Serdaroğlu Kaşıkçı E. Effect of boric acid and quercetin combination on oxidative stress/ cognitive function in parkinson model // J Boron. – 2023. – Vol. 8, No. 3. – P. 85–91. DOI: 10.30728/boron.1215949
279. Revi M. Alzheimer's Disease Therapeutic Approaches // Adv Exp Med Biol. – 2020. – Vol. 1195. – P. 105–116. DOI: 10.1007/978-3-030-32633-3_15
280. Shin J.H. Dementia Epidemiology Fact Sheet 2022 // Ann Rehabil Med. – 2022. – Vol. 46, No. 2. – P. 53–59. DOI: 10.5535/arm.22027
281. Murphy M.P., LeVine H. 3rd. Alzheimer's disease and the amyloid-beta peptide // J Alzheimers Dis. – 2010. – Vol. 19, No. 1. – P. 311–323. DOI: 10.3233/JAD-2010-1221
282. Paudel P., Seong S.H., Zhou Y., Park H.J., Jung H.A., Choi J.S. Anti-Alzheimer's Disease Activity of Bromophenols from a Red Alga, Symphyocladia latiuscula (Harvey) Yamada // ACS Omega. – 2019. – Vol. 4, No. 7. – P. 12259–12270. DOI: 10.1021/acsomega.9b01557
283. Özdemir Ç., Arslan M., Küçük A., Yığman Z., Dursun A.D. Therapeutic Efficacy of Boric Acid Treatment on Brain Tissue and Cognitive Functions in Rats with Experimental Alzheimer's Disease // Drug Des Devel Ther. – 2023. – Vol. 17. – P. 1453–1462. DOI: 10.2147/DDDT.S405963
284. Colak S., Geyikoglu F., Keles O.N., Türkez H., Topal A., Unal B. The neuroprotective role of boric acid on aluminum chloride-induced neurotoxicity // Toxicol Ind Health. – 2011. – Vol. 27, No. 8. – P. 700–710. DOI: 10.1177/0748233710395349
285. Lu C.J., Hu J., Wang Z., Xie S., Pan T., Huang L., Li X. Discovery of boron-containing compounds as Aβ aggregation inhibitors and antioxidants for the treatment of Alzheimer's disease // Medchemcomm. – 2018. – Vol. 9, No. 11. – P. 1862–1870. DOI: 10.1039/c8md00315g
286. Anam A.K., Insogna K. Update on Osteoporosis Screening and Management // Med Clin North Am. – 2021. – Vol. 105, No. 6. – P. 1117–1134. DOI: 10.1016/j.mcna.2021.05.016
287. Curtis E.M., van der Velde R., Moon R.J., van den Bergh J.P., Geusens P., de Vries F., van Staa T.P., Cooper C., Harvey N.C. Epidemiology of fractures in the United Kingdom 1988-2012: Variation with age, sex, geography, ethnicity and socioeconomic status // Bone. – 2016. – Vol. 87. – P. 19–26. DOI: 10.1016/j.bone.2016.03.006
288. Kanis J.A. Diagnosis of osteoporosis and assessment of fracture risk // Lancet. – 2002. – Vol. 359, No. 9321. – P. 1929–1936. DOI: 10.1016/S0140-6736(02)08761-5
289. Rosen H.N., Vokes T.J., Malabanan A.O., Deal C.L., Alele J.D., Olenginski T.P., Schousboe J.T. The Official Positions of the International Society for Clinical Densitometry: vertebral fracture assessment // J Clin Densitom. – 2013. – Vol. 16, No. 4. – P. 482–488. DOI: 10.1016/j.jocd.2013.08.003
290. Egorova E.A., Beitullaev A.M., Matveev A.V., Koryanova K.N. Review of publications on drug-related problems investigations in osteoporosis patients // Pharmacy & Pharmacology. – 2023. – Vol. 11, No. 5. – P. 412–421. DOI: 10.19163/2307-9266-2023-11-5-412-421
291. Xu B., Dong F., Yang P., Wang Z., Yan M., Fang J., Zhang Y. Boric Acid Inhibits RANKL-Stimulated Osteoclastogenesis In Vitro and Attenuates LPS-Induced Bone Loss In Vivo // Biol Trace Elem Res. – 2023. – Vol. 201, No. 3. – P. 1388–1397. DOI: 10.1007/s12011-022-03231-5
292. Toker H., Ozdemir H., Balci Yuce H., Goze F. The effect of boron on alveolar bone loss in osteoporotic rats // J Dent Sci. – 2016. – Vol. 11, No. 3. – P. 331–337. DOI: 10.1016/j.jds.2016.03.011
293. Eltzschig H.K., Eckle T. Ischemia and reperfusion--from mechanism to translation // Nat Med. – 2011. – Vol. 17, No. 11. – P. 1391–1401. DOI: 10.1038/nm.2507
294. Frangogiannis N.G. Pathophysiology of Myocardial Infarction // Compr Physiol. – 2015. – Vol. 5, No. 4. – P. 1841–1875. DOI: 10.1002/cphy.c150006
295. Zhao Y., Zhang X., Chen X., Wei Y. Neuronal injuries in cerebral infarction and ischemic stroke: From mechanisms to treatment (Review) // Int J Mol Med. – 2022. – Vol. 49, No. 2. – P. 15. DOI: 10.3892/ijmm.2021.5070
296. Wu M.Y., Yiang G.T., Liao W.T., Tsai A.P., Cheng Y.L., Cheng P.W., Li C.Y., Li C.J. Current Mechanistic Concepts in Ischemia and Reperfusion Injury // Cell Physiol Biochem. – 2018. – Vol. 46, No. 4. – P. 1650–1667. DOI: 10.1159/000489241
297. Yapca O.E., Borekci B., Suleyman H. Ischemia-reperfusion damage // Eurasian J Med. – 2013. – Vol. 45, No. 2. – P. 126–127. DOI: 10.5152/eajm.2013.24
298. Güler S., Aslaner A., Ellidağ H.Y., Yıldırım Ş., Çakır T. The protective effect of boric acid on cholestatic rat liver ischemia reperfusion injury // Turk J Med Sci. – 2021. – Vol. 51, No. 5. – P. 2716–2726. DOI: 10.3906/sag-2101-153
299. Çolak S., Koc K., Yıldırım S., Geyikoğlu F. Effects of boric acid on ovarian tissue damage caused by experimental ischemia/reperfusion // Biotech Histochem. – 2022. – Vol. 97, No. 6. – P. 415–422. DOI: 10.1080/10520295.2021.2012823
300. Allahverdiyev O., Dzhafar S., Berköz M., Yıldırım M. Advances in current medication and new therapeutic approaches in epilepsy // East J Med. – 2018. – Vol. 23, No. 1. – P. 48–59. DOI: 10.5505/ejm.2018.62534
301. Berköz M., Yunusoğlu O., Aslan A., Bozkurt A. Investigation of antiepileptic potentials of usnic acid and some lichen species on the behavioral and biochemical levels in pentylenetetrazole-induced kindling model of epilepsy // J Res Pharm. – 2024. – Vol. 28, No. 5. – P. 1378–1390. DOI: 10.29228/jrp.816
302. Kurt A.H., Bosnak M., Inan S.Y., Celik A., Uremis M.M. Epileptogenic effects of G protein-coupled estrogen receptor 1 in the rat pentylenetetrazole kindling model of epilepsy // Pharmacol Rep. – 2016. – Vol. 68, No. 1. – P. 66–70. DOI: 10.1016/j.pharep.2015.07.001
303. Engel J. Jr. Concepts of epilepsy // Epilepsia. – 1995. – Vol. 36, Suppl 1. – P. S23–29. DOI: 10.1111/j.1528-1157.1995.tb01648.x
304. Fisher R.S., van Emde Boas W., Blume W., Elger C., Genton P., Lee P., Engel J. Jr. Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE) // Epilepsia. – 2005. – Vol. 46, No. 4. – P. 470–472. DOI: 10.1111/j.0013-9580.2005.66104.x
305. Karademir M., Arslan G. The effect of boric acid on penicillin induced experimental epilepsy // CMJ. – 2019. – Vol. 41, No. 1. – P. 150–157. DOI: 10.7197/223.vi.543145
306. Akdere Ö.E., Shikhaliyeva İ., Gümüşderelioğlu M. Boron mediated 2D and 3D cultures of adipose derived mesenchymal stem cells // Cytotechnology. – 2019. – Vol. 71, No. 2. – P. 611–622. DOI: 10.1007/s10616-019-00310-9
307. Lu L., Zhang Q., Ren M., Jin E., Hu Q., Zhao C., Li S. Effects of Boron on Cytotoxicity, Apoptosis, and Cell Cycle of Cultured Rat Sertoli Cells In vitro // Biol Trace Elem Res. – 2020. – Vol. 196, No. 1. – P. 223–230. DOI: 10.1007/s12011-019-01911-3
308. Yilmaz H., Özbek E.N., İşel E., Debeleç-Bütüner B., Yetik‐Anacak G., Tansu Koparal A., Ulus G. Evaluation of Borax Pentahydrate as a Novel Antiangiogenic Agent. – 2023. DOI: 10.21203/rs.3.rs-3267555/v1
309. Bolt H.M., Duydu Y., Başaran N., Golka K. Boron and its compounds: current biological research activities // Arch Toxicol. – 2017. – Vol. 91, No. 8. – P. 2719–2722. DOI: 10.1007/s00204-017-2010-1
310. Demircan B., Velioğlu Y.S. Toxicological Evaluation of Boron Compounds Taken from Food and Environment // Akademik Gıda. – 2020. – Vol. 18, No. 3. – P. 312–322. DOI: 10.24323/akademik-gida.818193
311. Duydu Y., Başaran N., Üstündağ A., Aydin S., Ündeğer Ü., Ataman O.Y., Aydos K., Düker Y., Ickstadt K., Waltrup B.S., Golka K., Bolt H.M. Reproductive toxicity parameters and biological monitoring in occupationally and environmentally boron-exposed persons in Bandirma, Turkey // Arch Toxicol. – 2011. – Vol. 85, No. 6. – P. 589–600. DOI: 10.1007/s00204-011-0692-3
312. Hunt C.D., Herbel J.L., Nielsen F.H. Metabolic responses of postmenopausal women to supplemental dietary boron and aluminum during usual and low magnesium intake: boron, calcium, and magnesium absorption and retention and blood mineral concentrations // Am J Clin Nutr. – 1997. – Vol. 65, No. 3. – P. 803–813. DOI: 10.1093/ajcn/65.3.803
Рецензия
Для цитирования:
Юнусоглу О., Калфа И., Демирель М., Бинзет М., Севинч У., Тюрель И., Курт А. Комплексный обзор фармакологических, терапевтических и токсикологических свойств борной кислоты и других борсодержащих соединений: текущее состояние и будущие перспективы. Фармация и фармакология. 2025;13(3):202-238. https://doi.org/10.19163/2307-9266-2025-13-3-202-238
For citation:
Yunusoglu O., Kalfa I., Demirel M., Binzet M., Sevinc U., Turel I., Kurt A. A Comprehensive Review of the Pharmacological, Therapeutic, and Toxicological Properties of Boric Acid and Other Boron-Containing Compounds: Current Landscape and Future Perspectives. Pharmacy & Pharmacology. 2025;13(3):202-238. https://doi.org/10.19163/2307-9266-2025-13-3-202-238