Synthesis and multimodal activity of 3a,6-epoxyisoindole-2(3H)-(carbox/thio/seleno)amides in models of glycation, oxidative stress, and inflammation: Toward the development of agents targeting the triggering mechanisms of fibrogenesis
https://doi.org/10.19163/2307-9266-2025-13-6-500-514
Abstract
The aim. Within a series of 3a,6-epoxyisoindole-2(3H)-(carbox/thio/seleno)amides, we sought to identify a multimodal scaffold suitable for the further development of agents to prevent and treat fibrotic diseases by assessing of compound’s ability to mitigate glycation and oxidative stress, key triggers of fibrogenesis; to select a non-cytotoxic lead with a balanced combination of these two activities, and to preliminarily evaluate its anti-inflammatory potential.
Materials and methods. Target 3a,6-epoxyisoindole-2(3H)-(carbox/thio/seleno)amides were synthesised using the IMDAF approach. Antiglycation activity was evaluated in a bovine serum albumin-glucose model by registering advanced glycation end-product (AGE) fluorescence. Antioxidant properties were determined using the ABTS assay. Cytotoxicity and antiinflammatory effects were studied in peritoneal macrophages from adult wild-type white mice (n = 4; body mass 30–35 g). Cytotoxicity was assessed by the MTT assay and lactate dehydrogenase (LDH) release, while anti-inflammatory effects were evaluated in a model of LPS-induced nitric oxide (NO) production.
Results. The study delineates promising directions for modifying the epoxyisoindole scaffold for drug discovery and proposes a screening framework for agents targeting pathologies dependent on non-enzymatic damaging mechanisms (glycation, oxidation), including fibrotic diseases. Active molecules were identified among derivatives of hydrogenated 3a,6-epoxyisoindole. Compound 2.10 — 7a-chloro-N-(4-chlorophenyl)-1,6,7,7a-tetrahydro-3a,6-epoxyisoindole-2(3H)carbothioamide — exhibited an optimal balance of antiglycation (at 100 μM, inhibition of glycation 40.1 ± 1.7%) and antioxidant activity (at 111 μM, reduction in ABTS•+ colour intensity 57.1 ± 1.1%) with low cytotoxicity (apparent from ≥ 250 μM). By contrast, compounds 2.16–2.19 (bearing an aroyl fragment) showed exceptionally high antioxidant activity (95.0–96.5% reduction in ABTS•+ colour intensity) without concordant antiglycation effects (inhibition not exceeding 15%). In the model used, anti-inflammatory activity of 2.10 was not detected.
Conclusion. Compound 2.10 is a promising starting point for further structural optimisation toward agents acting on early pathogenetic events driven by non-enzymatic damaging triggers, including the prevention and treatment of fibrotic remodelling.
About the Authors
U. M. IbragimovaRussian Federation
assistant Professor of the Department of Pharmacology and Bioinformatics of the Volgograd State Medical University.
1 Pavshikh Bortsov Sq., Volgograd, Russia, 400066.
N. V. Valuysky
Russian Federation
laboratory assistant of the Laboratory of Metabotropic Medicines, Volgograd State Medical University.
1 Pavshikh Bortsov Sq., Volgograd, Russia, 400066.
V. R. Rayberg
Russian Federation
laboratory assistant at the Laboratory of Metabotropic Medicines, Volgograd State Medical University.
1 Pavshikh Bortsov Sq., Volgograd, Russia, 400066.
S. A. Sorokina
Russian Federation
laboratory assistant of the Laboratory of Metabotropic Medicines, Volgograd State Medical University.
1 Pavshikh Bortsov Sq., Volgograd, Russia, 400066.
K. I. Zhukova
Russian Federation
laboratory assistant at the Laboratory of Metabotropic Medicines, Volgograd State Medical University.
1 Pavshikh Bortsov Sq., Volgograd, Russia, 400066.
D. K. Deryagin
Russian Federation
4th year student of the Medical Faculty, Volgograd State Medical University.
1 Pavshikh Bortsov Sq., Volgograd, Russia, 400066.
I. S. Ukhorenko
Russian Federation
3rd year student of the Medical Faculty, Volgograd State Medical University.
1 Pavshikh Bortsov Sq., Volgograd, Russia, 400066.
A. A. Grigoryeva
Russian Federation
Bachelor of the 4th year of the Department of Organic Chemistry, RUDN University.
6 Miklukho-Maklaya Str., Moscow, Russia, 117198.
D. M. Shchevnikov
Russian Federation
2nd year graduate student of the Department of Organic Chemistry of the RUDN University.
6 Miklukho-Maklaya Str., Moscow, Russia, 117198.
V. P. Zaytsev
Russian Federation
Candidate of Sciences (Chemistry), Assistant Professor of the Department of Organic Chemistry, RUDN University.
6 Miklukho-Maklaya Str., Moscow, Russia, 117198.
R. A. Litvinov
Russian Federation
Candidate of Sciences (Medicine), Senior Researcher of the Laboratory of Metabotropic Medicines, Volgograd State Medical University; General Director of InnoVVita LLC.
1 Pavshikh Bortsov Sq., Volgograd, Russia, 400066.
6 Komsomolskaya Str., office 401, room 2, Volgograd, Russia, 400066.
References
1. Basak T, Saraswati S. Editorial: Fibrotic tissue remodeling as a driver of disease pathogenesis. Front Mol Biosci. 2023;10:1278388. DOI: 10.3389/fmolb.2023.1278388
2. Younesi FS, Miller AE, Barker TH, Rossi FMV, Hinz B. Fibroblast and myofibroblast activation in normal tissue repair and fibrosis. Nat Rev Mol Cell Biol. 2024;25(8):617–638. DOI: 10.1038/s41580-024-00716-0. Erratum in: Nat Rev Mol Cell Biol. 2024;25(8):671. DOI: 10.1038/s41580-024-00744-w
3. Mack M. Inflammation and fibrosis. Matrix Biol. 2018;68-69:106–121. DOI: 10.1016/j.matbio.2017.11.010
4. Hao H, Li X, Li Q, Lin H, Chen Z, Xie J, Xuan W, Liao W, Bin J, Huang X, Kitakaze M, Liao Y. FGF23 promotes myocardial fibrosis in mice through activation of β-catenin. Oncotarget. 2016;7(40):64649–64664. DOI: 10.18632/oncotarget.11623
5. Li Y, Zhao J, Yin Y, Li K, Zhang C, Zheng Y. The Role of IL-6 in Fibrotic Diseases: Molecular and Cellular Mechanisms. Int J Biol Sci. 2022;18(14):5405–5414. DOI: 10.7150/ijbs.75876
6. O'Reilly S. Interleukin-11 and its eminent role in tissue fibrosis: a possible therapeutic target. Clin Exp Immunol. 2023;214(2):154–161. DOI: 10.1093/cei/uxad108
7. Mayorca-Guiliani AE, Leeming DJ, Henriksen K, Mortensen JH, Nielsen SH, Anstee QM, Sanyal AJ, Karsdal MA, Schuppan D. ECM formation and degradation during fibrosis, repair, and regeneration. NPJ Metab Health Dis. 2025;3(1):25. DOI: 10.1038/s44324-025-00063-4
8. Roh JS, Sohn DH. Damage-Associated Molecular Patterns in Inflammatory Diseases. Immune Netw. 2018;18(4):e27. DOI: 10.4110/in.2018.18.e27
9. Otoupalova E, Smith S, Cheng G, Thannickal VJ. Oxidative Stress in Pulmonary Fibrosis. Compr Physiol. 2020;10(2):509–547. DOI: 10.1002/cphy.c190017
10. Zhao J, Randive R, Stewart JA. Molecular mechanisms of AGE/RAGE-mediated fibrosis in the diabetic heart. World J Diabetes. 2014;5(6):860–7. DOI: 10.4239/wjd.v5.i6.860
11. De Vriese AS, Flyvbjerg A, Mortier S, Tilton RG, Lameire NH. Inhibition of the interaction of AGE-RAGE prevents hyperglycemia-induced fibrosis of the peritoneal membrane. J Am Soc Nephrol. 2003;14(8):2109–2118. DOI: 10.1681/ASN.V1482109
12. Li L, Li Q, Wei L, Wang Z, Ma W, Liu F, Shen Y, Zhang S, Zhang X, Li H, Qian Y. Dexamethasone combined with berberine is an effective therapy for bleomycin-induced pulmonary fibrosis in rats. Exp Ther Med. 2019;18(4):2385–2392. DOI: 10.3892/etm.2019.7861
13. Gulbrandsen HS, Serigstad H, Read ML, Joos I, Gundersen LL. Formation of 8-Hydroxyphenanthridines by Microwave-Mediated IMDAF Reactions; Synthesis Directed towards Lycorine Alkaloids. Eur J Org Chem. 2019;2019(35):6044–6052. DOI: 10.1002/ejoc.201901000
14. Read ML, Krapp A, Miranda PO, Gundersen LL. Synthesis of complex fused polycyclic heterocycles utilizing IMDAF reactions of allylamino- or allyloxy-furyl(hetero)arenes. Tetrahedron. 2012;68:1869–1885. DOI: 10.1016/j.tet.2011.12.079
15. Zubkov FI, Ershova JD, Zaytsev VP, Obushak MD, Matiychuk VS, Sokolova EA, Khrustalev VN, Varlamov AV. The first example of an intramolecular Diels–Alder furan (IMDAF) reaction of iminium salts and its application in a short and simple synthesis of the isoindolo[1,2-a]isoquinoline core of the jamtine and hirsutine alkaloids. Tetrahedron Lett. 2010;51:6822–6824. DOI: 10.1016/j.tetlet.2010.10.046
16. Zubkov FI, Ershova JD, Orlova AA, Zaytsev VP, Nikitina EV, Peregudov AS, Gurbanov AV, Borisov RS, Khrustalev VN, Maharramov AM, Varlamov AV. A new approach to construction of isoindolo[1,2-a]isoquinoline alkaloids Nuevamine, Jamtine, and Hirsutine via IMDAF reaction. Tetrahedron. 2009;65:3789–3803. DOI: 10.1016/j.tet.2009.02.024
17. Zubkov FI, Nikitina EV, Galeev TR, Zaytsev VP, Khrustalev VN, Novikov RA, Orlova DN, Varlamov AV. General synthetic approach towards annelated 3a,6-epoxyisoindoles by tandem acylation/IMDAF reaction of furylazaheterocycles. Scope and limitations. Tetrahedron. 2014;70:1659–1690. DOI: 10.1016/j.tet.2014.01.008
18. Nadirova MA, Khanova AV, Zubkov FI, Mertsalov DF, Kolesnik IA, Petkevich SK, Potkin VI, Shetnev AA, Presnukhina SI, Sinelshchikova AA, Grigoriev MS, Zaytsev VP. Cascade of the Hinsberg/IMDAF reactions in the synthesis of 2-arylsulfonyl-3a,6-epoxyisoindoles and 4a,7-epoxyisoquinolines in water. Tetrahedron. 2021;85:132032. DOI: 10.1016/j.tet.2021.132032
19. Zubkov FI, Mertsalov DF, Zaytsev VP, Varlamov AV, Gurbanov AV, Dorovatovskii PV, Timofeeva TV, Khrustalev VN, Mahmudov KT. Halogen bonding in Wagner–Meerwein rearrangement products. J Mol Liq. 2018;249:949–952. DOI: 10.1016/j.molliq.2017.11.116
20. Trastulli Colangeli S, Campana F, Ferlin F, Vaccaro L. A waste-minimized protocol for electrochemical reductive amination and its environmental assessment. Green Chem. 2024;27:633–641. DOI: 10.1039/d4gc04847d
21. Müller C, Diehl V, Lichtenthaler FW. Building blocks from sugars. Part 23. Hydrophilic 3-pyridinols from fructose and isomaltulose. Tetrahedron. 1998;54:10703–10712. DOI: 10.1016/S0040-4020(98)00634-6
22. Deng J, Mo LP, Zhao FY, Hou LL, Yang L, Zhang ZH. Sulfonic acid supported on hydroxyapatite-encapsulated γ- Fe2O3 nanocrystallites as a magnetically separable catalyst for one-pot reductive amination of carbonyl compounds. Green Chem. 2011;13:2576–2584. DOI: 10.1039/C1GC15470B
23. Saberi D, Akbari J, Mahdudi S, Heydari A. Reductive amination of aldehydes and ketones catalyzed by deep eutectic solvent using sodium borohydride as a reducing agent. J Mol Liq. 2014;196:208–210. DOI: 10.1016/j.molliq.2014.03.024
24. Mertsalov DF, Shchevnikov DM, Lovtsevich LV, Novikov RA, Khrustalev VN, Grigoriev MS, Romanycheva AA, Shetnev AA, Bychkova OP, Trenin AS, Zaytsev VP. The short route to chalcogenurea-substituted 3a,6-epoxyisoindoles via an intramolecular Diels–Alder furan (IMDAF) reaction. Antibacterial and antifungal activity. New J Chem. 2024;48:12947–12959. DOI: 10.1039/d4nj01174k
25. Mertsalov DF, Lovtsevich LV, Shchevnikov DM, Dobrushina YuM, Sorokina EA, Grigoriev MS, Zaytsev VP. An intramolecular Diels–Alder reaction in the synthesis of N-aroyl-3a,6-epoxyisoindole-2-carbothioamides. Chem Heterocycl Compd. 2024;60:512–523. DOI: 10.1007/s10593-024-03369-1
26. Whiteman M, Li L, Rose P, Tan CH, Parkinson DB, Moore PK. The effect of hydrogen sulfide donors on lipopolysaccharide-induced formation of inflammatory mediators in macrophages. Antioxid Redox Signal. 2010;12(10):1147–54. DOI: 10.1089/ars.2009.2899
27. Fathy M, Fawzy MA, Hintzsche H, Nikaido T, Dandekar T, Othman EM. Eugenol Exerts Apoptotic Effect and Modulates the Sensitivity of HeLa Cells to Cisplatin and Radiation. Molecules. 2019;24(21):3979. DOI: 10.3390/molecules24213979
28. El-Demerdash E. Anti-inflammatory and antifibrotic effects of methyl palmitate. Toxicol Appl Pharmacol. 2011;254(3):238–44. DOI: 10.1016/j.taap.2011.04.016
29. Plumb JA, Milroy R, Kaye SB. Effects of the pH dependence of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide-formazan absorption on chemosensitivity determined by a novel tetrazolium-based assay. Cancer Res. 1989;49(16):4435–4440.
30. McComb RB, Bond LW, Burnett RW, Keech RC, Bowers GN Jr. Determination of the molar absorptivity of NADH. Clin Chem. 1976;22(2):141–50.
31. Freyer D, Harms C. Kinetic Lactate Dehydrogenase Assay for Detection of Cell Damage in Primary Neuronal Cell Cultures. Bio Protoc. 2017;7(11):e2308. DOI: 10.21769/BioProtoc.2308
32. Potter TM, Cedrone E, Neun BW, Dobrovolskaia MA. Detection of Nitric Oxide Production by the Macrophage Cell Line RAW264.7: Version 2. 2020 Sep. In: National Cancer Institute’s Nanotechnology Characterization Laboratory Assay Cascade Protocols [Internet]. Bethesda (MD): National Cancer Institute (US); 2005 May 1–. NCL Method ITA-7.
33. Cho SJ, Roman G, Yeboah F, Konishi Y. The road to advanced glycation end products: a mechanistic perspective. Curr Med Chem. 2007;14(15):1653–71. DOI: 10.2174/092986707780830989
34. Yeh WJ, Hsia SM, Lee WH, Wu CH. Polyphenols with antiglycation activity and mechanisms of action: A review of recent findings. J Food Drug Anal. 2017;25(1):84–92. DOI: 10.1016/j.jfda.2016.10.017
35. Spasov AA, Brel AK, Litvinov RA, Lisina SV, Kucheryavenko AF, Budaeva YuN, Salaznikova OA, Rashchenko AI, Shamshina DD, Batrakov VV, Ivanov AV. Evaluation of N-Hydroxy-, N-Metoxy-, and N-Acetoxybenzoyl-Substituted Derivatives of Thymine and Uracil as New Substances for Prevention and Treatment of Long-Term Complications of Diabetes Mellitus. Russ J Bioorg Chem. 2018;44(6):769–777. DOI: 10.1134/S1068162019010163
36. Wynn TA, Ramalingam TR. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat Med. 2012;18(7):1028–40. DOI: 10.1038/nm.2807
37. Fournet M, Bonté F, Desmoulière A. Glycation Damage: A Possible Hub for Major Pathophysiological Disorders and Aging. Aging Dis. 2018;9(5):880–900. DOI: 10.14336/AD.2017.1121
38. Vona R, Pallotta L, Cappelletti M, Severi C, Matarrese P. The Impact of Oxidative Stress in Human Pathology: Focus on Gastrointestinal Disorders. Antioxidants (Basel). 2021;10(2):201. DOI: 10.3390/antiox10020201
39. Makena P, Kikalova T, Prasad GL, Baxter SA. Oxidative Stress and Lung Fibrosis: Towards an Adverse Outcome Pathway. Int J Mol Sci. 2023;24(15):12490. DOI: 10.3390/ijms241512490
40. Shroff A, Mamalis A, Jagdeo J. Oxidative Stress and Skin Fibrosis. Curr Pathobiol Rep. 2014;2(4):257–267. DOI: 10.1007/s40139-014-0062-y
41. Verzijl N, DeGroot J, Ben ZC, Brau-Benjamin O, Maroudas A, Bank RA, Mizrahi J, Schalkwijk CG, Thorpe SR, Baynes JW, Bijlsma JW, Lafeber FP, TeKoppele JM. Crosslinking by advanced glycation end products increases the stiffness of the collagen network in human articular cartilage: a possible mechanism through which age is a risk factor for osteoarthritis. Arthritis Rheum. 2002;46(1):114–23. DOI: 10.1002/1529-0131(200201)46:1<114::AID-ART10025>3.0.CO;2-P
42. Lloyd SM, He Y. Exploring Extracellular Matrix Crosslinking as a Therapeutic Approach to Fibrosis. Cells. 2024;13(5):438. DOI: 10.3390/cells13050438
43. Lyu C, Kong W, Liu Z, Wang S, Zhao P, Liang K, Niu Y, Yang W, Xiang C, Hu X, Li X, Du Y. Advanced glycation end-products as mediators of the aberrant crosslinking of extracellular matrix in scarred liver tissue. Nat Biomed Eng. 2023;7(11):1437–1454. DOI: 10.1038/s41551-023-01019-z
44. Wang K, Wen D, Xu X, Zhao R, Jiang F, Yuan S, Zhang Y, Gao Y, Li Q. Extracellular matrix stiffness-The central cue for skin fibrosis. Front Mol Biosci. 2023;10:1132353. DOI: 10.3389/fmolb.2023.1132353
45. Liu RM, Desai LP. Reciprocal regulation of TGF-β and reactive oxygen species: A perverse cycle for fibrosis. Redox Biol. 2015;6:565–577. DOI: 10.1016/j.redox.2015.09.009
46. Dong H, Zhang Y, Huang Y, Deng H. Pathophysiology of RAGE in inflammatory diseases. Front Immunol. 2022;13:931473. DOI: 10.3389/fimmu.2022.931473
47. Richter K, Kietzmann T. Reactive oxygen species and fibrosis: further evidence of a significant liaison. Cell Tissue Res. 2016;365(3):591–605. DOI: 10.1007/s00441-016-2445-3
48. Peng X, Ma J, Chen F, Wang M. Naturally occurring inhibitors against the formation of advanced glycation end-products. Food Funct. 2011;2(6):289–301. DOI: 10.1039/c1fo10034c
49. Augustyniak A, Bartosz G, Cipak A, Duburs G, Horáková L, Luczaj W, Majekova M, Odysseos AD, Rackova L, Skrzydlewska E, Stefek M, Strosová M, Tirzitis G, Venskutonis PR, Viskupicova J, Vraka PS, Zarković N. Natural and synthetic antioxidants: an updated overview. Free Radic Res. 2010;44(10):1216–62. DOI: 10.3109/10715762.2010.508495
50. Reddy VP, Garrett MR, Perry G, Smith MA. Carnosine: a versatile antioxidant and antiglycating agent. Sci Aging Knowledge Environ. 2005;2005(18):pe12. DOI: 10.1126/sageke.2005.18.pe12
51. Kosmachevskaya OV, Nasybullina EI, Pugachenko IS, Novikova NN, Topunov AF. Antiglycation and Antioxidant Effect of Nitroxyl towards Hemoglobin. Antioxidants (Basel). 2022;11(10):2007. DOI: 10.3390/antiox11102007
52. Liu H, Huo X, Wang S, Yin Z. The inhibitory effects of natural antioxidants on protein glycation as well as aggregation induced by methylglyoxal and underlying mechanisms. Colloids Surf B Biointerfaces. 2022;212:112360. DOI: 10.1016/j.colsurfb.2022.112360
53. Intagliata S, Spadaro A, Lorenti M, Panico A, Siciliano EA, Barbagallo S, Macaluso B, Kamble SH, Modica MN, Montenegro L. In Vitro Antioxidant and Anti-Glycation Activity of Resveratrol and Its Novel Triester with Trolox. Antioxidants (Basel). 2020;10(1):12. DOI: 10.3390/antiox10010012
54. Caruso G, Di Pietro L, Cardaci V, Maugeri S, Caraci F. The therapeutic potential of carnosine: Focus on cellular and molecular mechanisms. Curr Res Pharmacol Drug Discov. 2023;4:100153. DOI: 10.1016/j.crphar.2023.100153
55. Sirangelo I, Borriello M, Liccardo M, Scafuro M, Russo P, Iannuzzi C. Hydroxytyrosol Selectively Affects Non-Enzymatic Glycation in Human Insulin and Protects by AGEs Cytotoxicity. Antioxidants (Basel). 2021;10(7):1127. DOI: 10.3390/antiox10071127
56. Ibragimova UM, Valuisky NV, Sorokina SA, Zhukova XI, Raiberg VR, Litvinov RA. [Antiglycation Activity of Isoindole Derivatives and Its Prediction Using Frontier Molecular Orbital Energies]. Mol Biol (Mosk). 2024;58(6):1052–1060. Russian
57. Speck K, Magauer T. The chemistry of isoindole natural products. Beilstein J Org Chem. 2013;9:2048–78. DOI: 10.3762/bjoc.9.243
Review
For citations:
Ibragimova U.M., Valuysky N.V., Rayberg V.R., Sorokina S.A., Zhukova K.I., Deryagin D.K., Ukhorenko I.S., Grigoryeva A.A., Shchevnikov D.M., Zaytsev V.P., Litvinov R.A. Synthesis and multimodal activity of 3a,6-epoxyisoindole-2(3H)-(carbox/thio/seleno)amides in models of glycation, oxidative stress, and inflammation: Toward the development of agents targeting the triggering mechanisms of fibrogenesis. Pharmacy & Pharmacology. 2025;13(6):500-514. (In Russ.) https://doi.org/10.19163/2307-9266-2025-13-6-500-514



















































