BIOLOGICAL ACTIVITY OF THE COMPONENTS OF ROYAL JELLY AND BEE VENOM
https://doi.org/10.19163/2307-9266-2018-6-5-419-439
Abstract
Both bee products themselves and their combinations are widely represented in the domestic pharmaceutical market, however, modern experimental studies of the biological activity of these compounds are few, and in many of the existing publications the authors describe an extremely wide and controversial range of therapeutic effects. The aim of the study is to analyze the experimental works on the study of biological activity of bee products. Materials and methods. The study was conducted using search and information (eLibrary, PubMed, CyberLeninka, ResearchGate) and library databases (Russian State Library, Central Scientific Agricultural Library). In the designated databases, publications were searched by such terms as “biological activity”, “royal jelly”, etc. The depth of the search was not limited. Results and discussion. The analysis of the published works shows that such substances as bee venom and royal jelly have experimentally confirmed their biological activity. In both cases, the active substances have been described and a review of their detected biological activity has been carried out. Conclusion. The authors suggest that when developing the method of laboratory synthesis of decene acids, it can be possible to carry out their large-scale preclinical research, which may become the basis for the creation of a drug with a selective effect.
About the Authors
S. G. MardanlyRussian Federation
Mardanly Seyfaddin Gashimovich – Professor of the Department of Pharmacology and Pharmaceutical Disciplines, Doctor of Medicine, Honored Employee of Health of the Russian Federation.
SPIN-code: 8284-0411, AuthorID: 772550.
22, Zelenaya Str., Orekhovo-Zuyevo, Moscow region, Russia, 142600;
1, Budenny Str, Elektrogorsk, Moscow region, Russia, 142530.
V. V. Pomazanov
Russian Federation
Pomazanov Vladimir Vasilyevich – Doctor of Technical Sciences, Professor of the Department of Pharmacology and Pharmaceutical Disciplines, President of the Association of chromatographists n.a. MS Tsvet, an expert in the field of physico-chemical methods for analyzing complex mixtures of natural and artificial origin.
SPIN-code: 3200-2407, AuthorID: 603793.
22, Zelenaya Str., Orekhovo-Zuyevo, Moscow region, Russia, 142600;
1, Budenny Str, Elektrogorsk, Moscow region, Russia, 142530.
V. A. Kiseleva
Russian Federation
Kisileva Valentina Alekseevna – Candidate of Sciences (Medicine), Associate Professor of the Department of Pharmacology and Pharmaceutical Disciplines, State Educational Institution of Higher Education of the Moscow Region, Dean of the Faculty of Pharmacy.
SPIN-code: 3412-2916, AuthorID: 342898
22, Zelenaya Str., Orekhovo-Zuyevo, Moscow region, Russia, 142600
Ya. B. Neskorodov
Russian Federation
Neskorodov Yaroslav Borisovich - Candidate of Sciences (Biology). Researcher of the company ECO Lab.
SPIN-code: 4104-2520, AuthorID: 630791.
1, Budenny Str, Elektrogorsk, Moscow region, Russia, 142530
References
1. Drews J. Drug discovery: a historical perspective. Science. 2000; 287(5460):1960–64. DOI: 10.1126/science.287.5460.1960.
2. Barenbojm GM, Malenkov AG. Biologicheski aktivnye veshchestva: Novye principy poiska. [Biologically active substances: New principles of search]. Moscow: Science; 1986. Russian.
3. Urozhenko OA. Apiterapiya-lechenie produktami pchelovodstva. [Apitherapy – treatment with bee products]. Мoscow: DeLi print; 2003. Russian.
4. Rylova AV, Lubnin AYu. Vliyanie anestezii ksenonom na kislorodnyj status i metabolizm golovnogo mozga u nejrohirurgicheskih bol’nyh [Effect of xenon anesthesia on the oxygen status and brain metabolism in neurosurgical patients. Anesthesiology and Resuscitation.]. 2011; 61(4):17–21. Russian.
5. Adolf von Planta A. Ueber den Futtersaft der Bienen.Zeitschrift für physiologische Chemie. 1888; 12(4):327–54.
6. Johansson TSK. Royal jelly. Bee World. 1955; 36 (2):21–32.
7. Townsend GF, Lucas CC. The chemical nature of royal jelly. Biochemical Journal. 1940; 34(8–9): 1155.
8. Lercker G, Capella P, Conte LS, Ruini F, Giordani G. Components of royal jelly: I. Identification of the organic acids. Lipids. 1981; (12):912–19.
9. Noda N, Umebayashi K, Nakatani T, Miyahara K, Ishiyama K. Isolation and characterization of some hydroxy fatty and phosphoric acid esters of 10-hydroxy-2-decenoic acid from the royal jelly of honeybees (Apis mellifera). Lipids. 2005; 40(8):833–38. https://doi.org/10.1007/s11745-005-1445-6.
10. McCleskey CS, Melampy R. M. Bactericidal properties of royal jelly of the honeybee. Journal of Economic Entomology.1939; 32(4):581–87.
11. Krasikova VI. Bactericidal properties of brood food. Pchelovodstvo. 1955; 32(8):50–53. Russian.
12. Abbot OD, French RD. Chemical composition and physiological properties of royal jelly. Agricultural experiment station. Annual report. University of Florida. 1945 June 30; р. 69. http://ufdc.ufl.edu/UF00027385/00031/1x.
13. Blum MS, Novak AF, Taber S. 10-hydroxy-Δ2-decenoic acid, an antibiotic found in royal jelly. Science. 1959; 130(3373):452–53.
14. National Center for Biotechnology Information. PubChem Compound Database; CID=5280963, https://pubchem.ncbi.nlm.nih.gov/compound/5280963 (accessed Nov. 9, 2016).
15. Butenandt A, Rembold H. Über den Weiselzellenfuttersaft der Honigbiene I. Isolierung, Konstitutionsermittlung und Vorkommen der 10-Hydroxy-Δ2-decensäure.Hoppe-Seyler´s Zeitschrift für physiologische Chemie.1957: 308(1):284–289.
16. Barker SA, Foster AB, Lamb DC. Identification of 10-Hydroxy-Delta2-decenoic Acid in Royal Jelly. Nature. 1959 Apr 4; 183(4666):996–7.
17. Immerseel FV, Buck JD, Boyen F, Bohez L, Pasmans F, Volf J, Sevcik M, Rychlik I, Haesebrouck F, Ducatelle R. Medium-chain fatty acids decrease colonization and invasion through hilA suppression shortly after infection of chickens with Salmonella enterica serovar Enteritidis. Applied and Environmental Microbiology. 2004; 70 (6):3582–87. DOI: 10.1128/AEM.70.6.3582-3587.2004.
18. National Center for Biotechnology Information. PubChem Compound Database; CID=8892, https://pubchem.ncbi.nlm.nih.gov/compound/8892 (accessed Nov. 15, 2016).
19. National Center for Biotechnology Information. PubChem Compound Database; CID=379, https://pubchem.ncbi.nlm.nih.gov/compound/379 (accessed Nov. 15, 2016).
20. National Center for Biotechnology Information. PubChem Compound Database; CID=2969, https://pubchem.ncbi.nlm.nih.gov/compound/2969 (accessed Nov. 15, 2016).
21. National Center for Biotechnology Information. PubChem Compound Database; CID=5312738, https://pubchem.ncbi.nlm.nih.gov/compound/5312738 (accessed Nov. 14, 2016).
22. National Center for Biotechnology Information. PubChem Compound Database; CID=74300, https://pubchem.ncbi.nlm.nih.gov/compound/74300 (accessed Nov. 25, 2016).
23. National Center for Biotechnology Information. PubChem Compound Database; CID=1713086, https://pubchem.ncbi.nlm.nih.gov/compound/1713086 (accessed Nov. 14, 2016).
24. Kodai T, Nakatani T, Noda N. The absolute configurations of hydroxy fatty acids from the royal jelly of honeybees (Apis mellifera). Lipids. 2011; 46 (3):263–70. DOI: https://doi.org/10.1007/s11745-010-3497-x.
25. National Center for Biotechnology Information. PubChem Compound Database; CID=18408222, https://pubchem.ncbi.nlm.nih.gov/compound/18408222 (accessed Nov. 14, 2016).
26. National Center for Biotechnology Information. PubChem Compound Database; CID=26612, https://pubchem.ncbi.nlm.nih.gov/compound/26612 (accessed Nov. 14, 2016).
27. National Center for Biotechnology Information. PubChem Compound Database; CID=5192, https://pubchem.ncbi.nlm.nih.gov/compound/5192 (accessed Nov. 14, 2016).
28. Belov AE, Ismagilova AF. Effektivnost’ primeneniya 9-okso-2E-decenovoj kisloty dlya lecheniya mastita u korov i polucheniya moloka vysokogo sanitarnogo kachestva [Efficiency of using 9-oxo-2E-decenoic acid for treating mastitis in cows and obtaining milk of high sanitary quality. Bashkir State Agrarian University]. 2012; 2012(2):20–21. Russian.
29. National Center for Biotechnology Information. PubChem Compound Database; CID=12560, https://pubchem.ncbi.nlm.nih.gov/compound/12560 (accessed Nov. 25, 2016).
30. National Center for Biotechnology Information. PubChem Compound Database; CID=5904, https://pubchem.ncbi.nlm.nih.gov/compound/5904 (accessed Nov. 25, 2016).
31. National Center for Biotechnology Information. PubChem Compound Database; CID=5999, https://pubchem.ncbi.nlm.nih.gov/compound/5999 (accessed Nov. 25, 2016).
32. National Center for Biotechnology Information. PubChem Compound Database; CID=5340, https://pubchem.ncbi.nlm.nih.gov/compound/5340 (accessed Nov. 25, 2016).
33. Townsend GF, Morgan JF, Hazlett B. Activity of 10-hydroxydecenoic acid from royal jelly against experimental leukaemia and ascitic tumours. Nature. 1959; 183 (4670):1270–71.
34. Townsend GF, Morgan JF, Tolnai S, Hazlett B, Morton HJ, Shuel RW. Studies on the in vitroantitumor activity of fatty acids I. 10-hydroxy-2-decenoic acid from royal jelly. Cancer research. 1960; 20(4):503–10.
35. Townsend GF, William HB, Felauer EE, Barbara H. Studies on the in vitroantitumor activity of fatty acids: IV. The esters of acids closely related to 10-hydroxy-2-decenoic acid from royal jelly against transplantable mouse leukemia. Canadian journal of Biochemistry and Physiology. 1961; 39 (11): 1765–70.
36. Tolnai S, Morgan JF. Studies on the in vitroantitumor activity of fatty acids: v. Unsaturated acids. Canadian journal of biochemistry and physiology. 1962; 40(7): 869–75.
37. Elnagar SA. Royal jelly counteracts bucks’ “summer infertility”. Animal reproduction science. 2010; 121(1): 174–80. DOI: https://doi.org/10.1016/j.anireprosci.2010.05.008.
38. Mishima S, Suzuki KM, Isohama Y, Kuratsu N, Araki Y, Inoue M, Miyata T. Royal jelly has estrogenic effects in vitroand in vivo. Journal of ethnopharmacology. 2005; 101(1):215–20. DOI: https://doi.org/10.1016/j.jep.2005.04.012.
39. Kohguchi M, Inoue S, Ushio S, Kurimoto M. Effect of royal jelly diet on the testicular function of hamsters. Food science and technology research. 2004; 10(4):420–23. DOI: https://doi.org/10.3136/fstr.10.420.
40. Yang A, Zhou M, Zhang L, Xie G, Chen H, Liu Z, Ma W. Influence of royal jelly on the reproductive function of puberty male rats. Food and chemical toxicology. 2012; 50(6):1834–1840. DOI: https://doi.org/10.1016/j.fct.2012.02.098.
41. Zahmatkesh E, Najafi G, Nejati V, Heidari R. Protective effect of royal jelly on the sperm parameters and testos-terone level and lipid peroxidation in adult mice treated with oxymetholone. Avicenna journal of phytomedicine. 2014; 4(1): 43.
42. National Center for Biotechnology Information. PubChem Compound Database; CID=5281034, https://pubchem.ncbi.nlm.nih.gov/compound/5281034 (accessed Nov. 17, 2016).
43. Kind FA, Maqueo M, Dorfman RI. Influence of various steroids on testes and accessory sex organs in the rat. Acta endocrinologica. 1965; 49(1):145–154. DOI: https://doi.org/10.1530/acta.0.0490145.
44. Zahmatkesh E, Najafi G, Nejati V. Protective effect of royal jelly on in vitrofertilization (ivf) in male mice treated with oxymetholone. Cell Journal (Yakhteh). 2015; 17(3):569. DOI:10.22074/cellj.2015.19.
45. National Center for Biotechnology Information. PubChem Compound Database; CID=6623, https://pubchem.ncbi.nlm.nih.gov/compound/6623 (accessed Nov. 24, 2016).
46. Takeuchi T, Tsutsumi O, Ikezuki Y, Takai Y, Taketani Y. Positive relationship between androgen and the endocrine disruptor, bisphenol A, in normal women and women with ovarian dysfunction. Endocrine journal. 2004; 51(2): 165–69. https://doi.org/10.1507/endocrj.51.165.
47. Nakaya M, Onda H, Sasaki K, Yukiyoshi A, Tachibana H, Yamada K. Effect of royal jelly on bisphenol A-induced proliferation of human breast cancer cells. Bioscience, biotechnology, and biochemistry. 2007; 71(1): 253–55. DOI: https://doi.org/10.1271/bbb.60453.
48. Yang XY, Yang DS, Wei-Zhang, Wang JM, Li CY, Hui-Ye, Lei KF, Chen XF, Shen NH, Jin LQ, Wang JG. 10-Hydroxy-2-decenoic acid from Royal jelly: a potential medicine for RA. Journal of ethnopharmacology. 2010; 128(2): 314–321. DOI: https://doi.org/10.1016/j.jep.2010.01.055.
49. Ismagilova AF, Belov AE. Vliyanie sinteticheskogo preparata 9-ODK na kachestvo spermy hryakov [Influence of the synthetic drug 9-ODK on the quality of boar semen]. Scientific notes of the Kazan State Academy of Veterinary Medicine Bauman. 2012, р. 210. Russian.
50. Krylova EV, Potemkina TE, Koryagin AS, Nesterov GD. Profilakticheskoe dejstvie matochnogo molochka pchel na pokazateli spermatogeneza krys pri ostrom teplovom stresse [The prophylactic effect of royal jelly on the indicators of rat spermatogenesis under acute heat stress]. Bulletin of the Nizhny Novgorod University. NO Lobachevsky. 2011; 6(1): 138–43. Russian.
51. Kanter M, Aktas C, Erboga M. Curcumin attenuates testicular damage, apoptotic germ cell death, and oxidative stress in streptozotocin induced diabetic rats. Molecular nutrition & food research. 2013; 57 (9):1578–85.
52. Seethalakshmi L, Menon M, Diamond D. The effect of streptozotocin-induced diabetes on the neuroendocrine-male reproductive tract axis of the adult rat. The Journal of urology. 1987; 138(1): 190–94.
53. Cameron DF, Murray FT, Drylie DD. Interstitial compartment pathology and spermatogenic disruption in testes from impotent diabetic men. The Anatomical Record. 1985; 213(1):53–62. DOI: https://doi.org/10.1002/ar.1092130108.
54. Sadik NA, El-Seweidy MM, Shaker OG. The antiapoptotic effects of sulphurous mineral water and sodium hydrosulphide on diabetic rat testes. Cellular Physiology and Biochemistry. 2011; 28(5): 887–98. DOI: https://doi.org/10.1159/000335803.
55. National Center for Biotechnology Information. PubChem Compound Database; CID=29327, https://pubchem.ncbi.nlm.nih.gov/compound/29327 (accessed Nov. 18, 2016).
56. Karaca T, Demirtaş S, Karaboğa İ, Ayvazz S. Protective effects of royal jelly against testicular damage in streptozotocin-induced diabetic rats. Turkish journal of medical sciences. 2015; 45(1): 27–32. DOI: 10.3906/sag-1311–103.
57. Johnsen SG. Testicular biopsy score count–a method for registration of spermatogenesis in human testes: normal values and results in 335 hypogonadal males. Hormone Research in Paediatrics. 1970; 1(1): 2–25. DOI: https://doi.org/10.1159/000178170.
58. Hidaka S, Okamoto Y, Uchiyama S, Nakatsuma A, Hashimoto K, Ohnishi ST, Yamaguchi M. Royal jelly prevents osteoporosis in rats: beneficial effects in ovariectomy model and in bone tissue culture model. Evidence-based complementary and alternative medicine. 2006; 3(3):339–48. DOI: http://dx.doi.org/10.1093/ecam/nel019.
59. National Center for Biotechnology Information. PubChem Compound Database; CID=9859090, https://pubchem.ncbi.nlm.nih.gov/compound/9859090 (accessed Nov. 14, 2016).
60. Moutsatsou P, Papoutsi Z, Kassi E, Heldring N, Zhao C, Tsiapara A, Melliou E, Chrousos GP, Chinou I, Karshikoff A, Nilsson L, Dahlman-Wright K. Fatty acids derived from royal jelly are modulators of estrogen receptor functions. PLoS One. 2010; 5(12):155–94. DOI: https://doi.org/10.1371/journal.pone.0015594.
61. Feldman E. Thiobarbituric acid reactive substances (TBARS) assay. AMDCC Protocols, Version. 2004; (1):1–3.
62. Azab KS, Bashandy M, Salem M, Ahmed O, Tawfik Z, Helal H. Royal jelly modulates oxidative stress and tissue injury in gamma irradiated male Wister Albino rats. North American journal of medical sciences. 2011; 3(6):268. DOI:10.4297/najms.2011.3268.
63. National Center for Biotechnology Information. PubChem Compound Database; CID=16133648, https://pubchem.ncbi.nlm.nih.gov/compound/16133648 (accessed Dec 5, 2016).
64. Moreno M, Giralt E. Three valuable peptides from bee and wasp venoms for therapeutic and biotechnological use: Melittin, apamin and mastoparan. Toxins. 2015; 7(4):1126–50. DOI:10.3390/toxins7041126.
65. National Center for Biotechnology Information. PubChem Compound Database; CID=90684471, https://pubchem.ncbi.nlm.nih.gov/compound/90684471 (accessed Dec 5, 2016).
66. National Center for Biotechnology Information. PubChem Compound Database; CID=6324633, https://pubchem.ncbi.nlm.nih.gov/compound/6324633 (accessed Dec 5, 2016).
67. Kim KH, Sung HJ, Lee WR, An HJ, Kim JY, Pak SC, Han SM, Park KK. Effects of melittin treatment in cholangitis and biliary fibrosis in a model of xenobiotic-induced cholestasis in mice. Toxins. 2015; 7(9): 3372–87. DOI:10.3390/toxins7093372.
68. Li D, Lee Y, Kim W, Lee K, Bae H, Kim SK. Analgesic effects of bee venom derived phospholipase A2 in a mouse model of oxaliplatin-induced neuropathic pain. Toxins. 2015; 7(7):2422–34. DOI:https://doi.org/10.3390/toxins7072422.
69. Hyun JA, Kyung HK, Lee WR, Kim JY, Lee SJ, Pak SK, Han SM, Park KK. Anti-fibrotic effect of natural toxin bee venom on animal model of unilateral ureteral obstruction. Toxins. 2015; 7(6):1917–28. DOI:10.3390/toxins7061917.
70. Lee WR, Pak SC, Park KK. The protective effect of bee venom on fibrosis causing inflammatory diseases. Toxins. 2015; 7(11):4758–72. DOI:10.3390/toxins7114758.
71. Silva J, Monge-Fuentes V, Gomes F, Lopes K, Anjos L, Campos G, Arenas C, Biolchi A, Gonçalves J, Galante P, Campos L, Mortari M. Pharmacological alternatives for the treatment of neurodegenerative disorders: Wasp and bee venoms and their components as new neuroactive tools. Toxins. 2015; 7(8): 3179–3209. DOI:10.3390/ toxins7083179.
72. Hwang DS, Kim SK, Bae H. Therapeutic effects of bee venom on immunological and neurological diseases. Toxins. 2015; 7(7):2413–21. DOI:https://doi.org/10.3390/toxins7072413.
73. Lee JA, Kim YM, Hyun PM, Jeon JW, Park JK, Suh GH, Jung BG, Lee BJ. Honeybee (Apis mellifera) venom reinforces viral clearance during the early stage of infection with porcine reproductive and respiratory syndrome virus through the up-regulation of th1-specific immune responses. Toxins. 2015; 7(5):1837–53. DOI:10.3390/toxins7051837.
74. Artemov NM, Zeveke AV. Fiziologicheskij analiz gipotenzivnogo dejstviya pchelinogo yada [Physiological analysis of the hypotensive effect of bee venom]. Scient. not. Bitter un-that. Ser. biol. Bitter. 1967; (82):25–47. Russian.
75. Korneva NV. Fiziologicheskij analiz reflektornogo dejstviya nekotoryh zhivotnyh yadov [Physiological analysis of the reflex action of some animal poisons]. Gorky.1970; р. 20. Russian.
76. Krylov VN. Fiziologicheskoe obosnovanie primeneniya pchelinogo yada v apiterapii [Physiological substan-tiation of the use of bee venom in apitherapy]. Bulletin of the Nizhny Novgorod University. NO Lobachevsky Biology Series. 1999; (1):66–71. Russian.
77. Saburcev SA, Bobyleva OA, Krylov VN. Analiz gipertenzivnogo effekta pchelinogo yada [Analysis of the hypertensive effect of bee venom]. Bulletin of the Nizhny Novgorod State. University 1995; р.12–14. Russian.
78. Krylov VN. Pchelinyj yad. Svojstva, poluchenie, primenenie [Bee sting. Properties, obtaining, application]. 1995. Russian.
79. Lebedev VI, Dokukin YuV, Prokof’eva LV. Sostoyanie i perspektivy otechestvennogo pchelovodstva [The state and prospects of domestic beekeeping]. Beekeeping. 2015; (5):3–5. Russian.
80. Ishmuratov GYu, Vydrina VA, Nasibullina GV, Tolstikov GA. Sintez 9-okso-2E-decenovoj kisloty-mnogofunkcional’nogo feromona medonosnyh pchel Apis mellifera L [Synthesis of 9-oxo-2E-decenoic acid-multifunctional pheromone of honey bees Apis mellifera L]. Bulletin of Bashkir University. 2008; 13 (3). Russian.
81. Ebert GW. A Two-Step Synthesis of the “Queen Substance” of the Honey Bee. Synthetic communications. 1991; 21(14):1527–31. DOI:https://doi.org/10.1080/00397919108016427.
82. Ishmuratov GYu, Yakovleva MP, Botsman LP, Ishmuratova NM, Muslukhov RR, Khambalova GV, Tolstikov GA. Synthesis of a multifunctional pheromone of the honeybee Apis mellifera via condensation of 7-oxooctanal with malonic acid. Chemistry of natural compounds. 2003; 39(1): 28–30. DOI: https://doi.org/10.1023/A:1024172327822. Russian.
83. Heppell JT, Boon WC, Al-Rawi JM. A. Synthesis of (E)-10-hydroxy-2-decenoic acid ethyl ester via a one-pot tandem oxidation-Wittig process. Organic Communications. 2018; 11(3):168–72. DOI: http://doi.org/10.25135/acg.oc.48.18.06.106
84. Pirk CWW. Honeybee Evolution: Royal Jelly Proteins Help Queen Larvae to Stay on Top. Current Biology. 2018; 28(8):350–51.
85. Tian W, Li M, Guo H, Peng W, Xue X, Hu Y, Chen Z. Architecture of the native major royal jelly protein 1 oligomer. Nature communications. 2018; 9(1): 3373.
86. Jayakumaran RA, KG Ramanathana, Nair AJ, Sugunan VS. Review on Royal Jelly proteins and peptides. Journal of functional foods. 2018; 44:255–64. DOI: 10.1016/j.jff.2018.03.008.
Review
For citations:
Mardanly S.G., Pomazanov V.V., Kiseleva V.A., Neskorodov Ya.B. BIOLOGICAL ACTIVITY OF THE COMPONENTS OF ROYAL JELLY AND BEE VENOM. Pharmacy & Pharmacology. 2018;6(5):419-439. (In Russ.) https://doi.org/10.19163/2307-9266-2018-6-5-419-439