Preview

Pharmacy & Pharmacology

Advanced search

11-amino acid peptide imitating the structure of erythropoietin α-helix b improves endothelial function, but stimulates thrombosis in rats.

https://doi.org/10.19163/2307-9266-2019-7-6-312-320

Abstract

The aim of the study was to test whether P-αB can be positioned as a preventing and treating agent for cardiovascular diseases.

Materials and methods. The study was performed on sexually mature male Wistar rats. Endothelial dysfunction was modulated by a 7-days intraperitoneal administration of L-NAME at the dose of 2.5 mg/100 g. P-αB, or erythropoietin (EPO), was used for therapy at the dose of 2.5 µg/100 g × 3 times for 7 days, the total dose was 7.5 µg/100 g. The function of endothelium was estimated by an endothelium-dependent and endothelium-independent vasodilation. In addition, a histological assessment of the abdominal aortic wall state and the analysis of eNosTnf and Il-1β genes expression were performed. To estimate prothrombotic properties, P-αB and EPO were administered, at the doses of 2.5 and 5 µg/100 g (3 times a day for 7 days, the total doses were 7.5 µg/100 g and 15 µg/100 g, respectively) and on the 8th day, the time of ferric (III) chloride-induced carotid artery thrombosis was estimated.

Results. Theresults of the functional tests for endothelium-dependent and endothelium-independent vasodilatation, as well as the histological picture of the aorta have evidenced that P-αB and EPO do not affect L-NAME-induced hypertension but improve the endothelium function. At the same time, P-αB shows a significantly higher endothelial-protective activity, reducing the coefficient of endothelial dysfunction from 5.1±0.15 to 2.72±0.12. In addition, P-αB has significantly increased the expression of eNos and reduced the expression level of Tnf and Il-1β mRNA genes. Carrying out Ferric (III) chloride-induced carotid artery thrombosis has revealed that P-αB (5 µg/100 g × 3 times a day for 7 days, total dose was 15 µg/100 g) has a lower but statistically significant prothrombotic activity than EPO.

Conclusion. P-αB can be positioned as an atheroprotector because of its ability to prevent the death of endothelial cells, as well as to reduce remodeling and proinflammatory activation of the vascular wall. However, the prothrombotic properties of P-αB limit its use as a preventing and treating agent for atherosclerosis-associated diseases.

About the Authors

M. V. Korokin
Belgorod State National Research University
Russian Federation

Tat’yana A. Denisyuk – Doctor of Sciences (Medicine), Associate Professor, Professor of the Department of Pharmacology and Clinical Pharmacology

85, Pobeda st., Belgorod, Russia 308015



V. O. Soldatov
Belgorod State National Research University
Russian Federation

Vladislav O. Soldatov – Assistant of the Department of Pharmacology and Clinical Pharmacology

85, Pobeda st., Belgorod, Russia 308015



A. A. Tietze
University of Gothenburg
Sweden

Alesia A. Tietze – Senior Lecturer (Assistant Professor) in Medicinal Chemistry with focus on total synthesis of bioactive peptides, Department of Chemistry and Molecular Biology, Division of Organic and Medicinal Chemistry

PO Box 462 9 C, Medicine Aregatan St., Göteborg, Sweden



M. V. Golubev
Belgorod State National Research University
Russian Federation

Ivan V. Golubev – Applicant of the Department of Pharmacology and Clinical Pharmacology

85, Pobeda st., Belgorod, Russia 308015



A. E. Belykh
Kursk State Medical University
Russian Federation

Andrey E. Belykh – Candidate of Sciences (Medicine), Associate Professor of Pathophysiology Department

3, Karl Marx st., Kursk, Russia 305041



M. V. Kubekina
Institute of Gene Biology of the Russian Academy of Sciences
Russian Federation

Marina V. Kubekina – Post-Graduate Student

34/5, Vavilov st., Moscow, Russia 119334



O. A. Puchenkova
Belgorod State National Research University
Russian Federation

Olesya A. Puchenkova– 5th – year student at the Medical Institute

85, Pobeda st., Belgorod, Russia 308015



T. A. Denisyuk
Kursk State Medical University
Russian Federation

Tat’yana A. Denisyuk – Doctor of Sciences (Medicine), Associate Professor, Professor of the Department of Pharmacology and Clinical Pharmacology

3, Karl Marx St., Kursk, Russia 305041



V. V. Gureyev
Belgorod State National Research University
Russian Federation

Vladimir V. Gureyev – Doctor of Sciences (Medicine), Associate Professor of the Department of Pharmacology and Clinical Pharmacology

85, Pobeda sSt., Belgorod, Russia 308015



T. G. Pokrovskaya
Belgorod State National Research University
Russian Federation

Tat’yana G. Pokrovskaya – Doctor of Sciences (Medicine), Professor of the Department of Pharmacology and Clinical Pharmacology

85, Pobeda sSt., Belgorod, Russia 308015



O. S. Gudyrev
Belgorod State National Research University
Russian Federation

Ivan V. Golubev – Applicant of the Department of Pharmacology and Clinical Pharmacology

85, Pobeda sSt., Belgorod, Russia 308015



M. A. Zhuchenko
Scientific Research Centre, Kurchatov Institute
Russian Federation

Maksim A. Zhuchenko – Candidate of Sciences (Biology), the Section Chief

1, Akademik Kurchatov Square, Moscow, Russia 123098



M. A. Zatolokina
Kursk State Medical University
Russian Federation

Mariya A. Zatolokina – Doctor of Sciences (Medicine), Associate Professor, Professor of the Department of Histology, Cytology, Embryology

3, Karl Marx St., Kursk, Russia 305041



M. V. Pokrovskiy
Belgorod State National Research University
Russian Federation

Mikhail V. Pokrovskiy – Doctor of Sciences (Medicine), Professor of the Department of Pharmacology and Clinical Pharmacology, the Head of the Research Institute of Pharmacology of Living Systems

85, Pobeda sSt., Belgorod, Russia 308015



References

1. Glushko AA, Voronkov AV, Chernikov MV. Molecular targets in the search for endothelium-protecting compounds. Russian Journal of Bioorganic Chemistry. 2014;40(5):477–87. DOI: 10.1134/S1068162014050069

2. Tyurenkov IN, Voronkov AV, Slietsans AA, Volotova EV. Endothelial protection drugs a new class of pharmacological agents. Annals of the Russian academy of medical sciences. 2012;67(7):50–7. DOI: https://doi.org/10.15690/vramn.v67i7.341 (in Russ)

3. Zárate A, Manuel-Apolinar L, Basurto L, De la Chesnaye E, Saldívar J. Cholesterol and atherosclerosis. Historical considerations and treatment. Arch Cardiol Mex. 2016; 86(2): 163–9. doi: 10.1016/j.acmx.2015.12.002.

4. Orekhov AN, Poznyak AV, Sobenin IA, Nikifirov NN, Ivanova EA. Mitochondrion as a selective target for treatment of atherosclerosis: Role of mitochondrial DNA mutations and defective mitophagy in the pathogenesis of atherosclerosis and chronic inflammation. Curr Neuropharmacol. 2019. doi: 10.2174/1570159X17666191118125018.

5. Marzetti E, Calvani R, Cesari M, Buford TW, Lorenzi M, Behnke BJ Leeuwenburgh C. Mitochondrial dysfunction and sarcopenia of aging: from signaling pathways to clinical trials. Int J Biochem Cell Biol. 2013; 45(10):2288–301. doi: 10.1016/j.biocel.2013.06.024.

6. Voronkov AV, Pozdnyakov DI, Miroshnichenko KA, Potapova AA. Influence of New Pyrimidine Derivatives on Vasodilatory Cerebrovascular Endothelial Function under Conditions of Chronic Traumatic Encephalopathy. Experimental and Clinical Pharmacology. 2019;82(11):11–4. DOI: 10.30906/0869-2092-2019-82-11-11-14.

7. Voronkov AV, Pozdnyakov DI. Evaluati of the Infl of 4-Hydroxy-3,5-di-tert-butylcinnamic Acid on the Anti obomic Potenti of Endothelium in Rabbits under Conditi of Brain Ischemia. Experimental and Clinical Pharmacology. 2018; 81(8):3–7. DOI: 10.30906/0869-2092-2018-81-8-3-7

8. Gimbrone MA Jr, García-Cardeña G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ Res. 2016; 118(4):620–636. doi: 10.1161/CIRCRESAHA.115.306301.

9. Elagin, VV, Bratchikov OI, Ulyanova AA. Approaches to correction of ischemic and reperfusion kidney injuries in experiment. Nauchnyye rezul’taty biomeditsinskikh issledovaniy. 2018; 4(3): 3–69. doi: 10.18413/2313-89552018-4-3-0-6 (in Russ).

10. Shabelnikova AS, Lutsenko VD, Pokrovskii MV, Peresipkina AA, Korokin MV, Gudyrev OS, Hoshenko YA. Protective effects of recombinant erythropoietin in ischemia of the retina: The role of mechanisms of preconditioning. Research Journal of Medical Sciences. 2015; 9(4): 200–203. doi:10.3923/rjmsci.2015.200.203.

11. Korokina LV, Kolesnik IM, Pokrovskiy MV, Korokin MV, Belous AS, Artjushkova EB, Pokrovskaya TG, Gudyrev OS, Korolev AE, Pavlova LA, Novikov OO. Pharmacological correction of L-nAME induced nitric oxide deficiency with recombinant erythropotin. Kubanskiy nauchnyy meditsinskiy vestnik. 2009; 9(114): 66-69 (in Russ).

12. Denisyuk T. Pharmacotherapeutic strategies for endothelial dysfunction correction with use of statins in syndrome of systemic inflammatory response. Research Results in Pharmacology. 2017; 3(4): 35–77. doi: 10.18413/2313-8971-2017-3-4-35-77.

13. Denisyuk TA, Pokrovskiy MV. Combined use of recombinant erythropoieti and stati in endotoxin induced endothelial dysfuncti Allergologiya i immunologiya. 2016; 17(1): 64–65 (in Russ.)

14. Rajkumar DSR, Gudyrev OS, Faiteison AV, Pokrovskii MV. Study of the microcirculation level in bone with osteoporosis and osteoporotic fractures during therapy with recombinant erythropoietin, rosuvastatin and their combinations. Research result: pharmacology and clinical pharmacology. 2015; 4(6): 57–60. doi: 10.18413/2313-8971-2015-1-4-57-60.

15. Souvenir R, Doycheva D, Zhang JH, Tang J. Erythropoietin in stroke therapy: friend or foe. Curr Med Chem. 2015; 22(10): 1205–13.

16. Pearl RG. Erythropoietin and organ protecttion: lessons from negative clinical trials. Crit Care. 2014; 18(5): 526. doi: 10.1186/s13054-014-0526-9.

17. Brines M, Grasso G, Fiordaliso F, Sfacteria A, Ghezzi P, Fratelli M, Latini R, Xie QW, Smart J, Su-Rick CJ, Pobre E, Diaz D, Gomez D, Hand C, Coleman T, Cerami A. Erythropoietin mediates tissue protection through an erythropoietin and common beta-subunit heteroreceptor. Proc Natl Acad Sci USA. 2004; 101(1): 14907–12. doi.org/10.1073/pnas.0406491101.

18. Brines M, Patel NS, Villa P, Brines C, Mennini T, De Paola M, Erbayraktar Z, Erbayraktar S, Sepodes B, Thiemermann C, Ghezzi P, Yamin M, Hand CC, Xie QW, Coleman T, Cerami A. Nonerythropoietic, tissue-protective peptides derived from the tertiary structure of erythropoietin. Proc Natl Acad Sci U S A. 2008; 105(31): 10925–30. doi: 10.1073/pnas.0805594105.

19. Sultan F, Singh TU, Kumar T, Rungsung S, Rabha DJ, Vishwakarma A, Sukumaran SV, Kandasamy A, Parida S. Short-term exposure of erythropoietin impairs endothelial function through inhibition of nitric oxide production and eNOS mRNA expression in the rat pulmonary artery. Pharmacol Rep. 2017; 69(4): 658–665. doi: 10.1016/j.pharep.2017.02.003.

20. Pytela R, Pierschbacher MD, Ginsberg MH, Plow EF, Ruoslahti E. Platelet membrane glycoprotein IIb/IIIa: member of a family of Arg-Gly-Asp--specific adhesion receptors. Science. 1986; 231(4745): 1559–62. doi: 10.1126/science.2420006.

21. Sheu JR, Yen MH, Peng HC, Chang MC, Huang TF. Triflavin, an ArgGly-Asp-containing peptide, prevents platelet plug formation in in vivo experiments. Eur J Pharmacol. 1995; 294(1): 231–8. doi: 10.1016/0014-2999(95)00530-7.

22. Hung YC, Kuo YJ, Huang SS, Huang TF. Trimucrin, an Arg-Gly-Asp containing disintegrin, attenuates myocardial ischemia-reperfusion injury in murine by inhibiting platelet function. Eur J Pharmacol. 2017; 813: 24–32. doi: 10.1016/j.ejphar.2017.07.039.

23. Pastorova VE, Liapina LA, Alshmarin IP, Ostrovskaia PU, Gudasheva TA, Lugovskoĭ EV. Fibrin-depolymerization activity and the antiplatelet effect of small cyclic and linear proline-containing peptides. Izv Akad Nauk Ser Biol. 2001; 5: 593–6.

24. Lyapina LA, Pastorova VE, Obergan TY. Changes in hemostatic parameters after intranasal administration of peptide Pro-Gly-Pro. Bull Exp Biol Med. 2007; 144(4): 491–3. doi: 10.1007/s10517007-0358-6.

25. Liapina LA, Grigor’eva ME, Andreeva LA, Miasoedov NF. Protective antithrombotic effects of proline-containing peptides in the animal body subjected to stress. Izv Akad Nauk Ser Biol. 2010; 4: 462–7.

26. Shevchenko KV, Nagaev IY, Andreeva LA, Shevchenko VP, Myasoedov NF. Stability of prolin-containing peptides in biological media. Biomed Khim. 2019; 65(3): 180–201. doi: 10.18097/PBMC20196503180.

27. Wang Z, Zhang S, Jin H, Wang W, Huo J, Zhou L, Wang Y, Feng F, Zhang L. Angiotensin-I-converting enzyme inhibitory peptides: Chemical feature based pharmacophore generation. Eur J Med Chem. 2011; 46(8): 3428–33. doi: 10.1016/j.ejmech.2011.05.007.

28. Montezano AC, Nguyen Dinh Cat A, Rios FJ, Touyz RM. Angiotensin II and vascular injury. Curr Hypertens Rep. 2014; 16(6): 431. doi: 10.1007/s11906-014-0431-2.


Review

For citations:


Korokin M.V., Soldatov V.O., Tietze A.A., Golubev M.V., Belykh A.E., Kubekina M.V., Puchenkova O.A., Denisyuk T.A., Gureyev V.V., Pokrovskaya T.G., Gudyrev O.S., Zhuchenko M.A., Zatolokina M.A., Pokrovskiy M.V. 11-amino acid peptide imitating the structure of erythropoietin α-helix b improves endothelial function, but stimulates thrombosis in rats. Pharmacy & Pharmacology. 2019;7(6):312-320. https://doi.org/10.19163/2307-9266-2019-7-6-312-320

Views: 2072


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2307-9266 (Print)
ISSN 2413-2241 (Online)