Preview

Pharmacy & Pharmacology

Advanced search

The efficacy of liraglutide-based drugs on the model of induced metabolic syndrome in experimental animals

https://doi.org/10.19163/2307-9266-2025-13-3-171-183

Abstract

Today, there is an annualincrease in the prevalence of obesityandoverweightworldwide.Thisproblem is becomingparticularlyrelevant,sincetheseconditionsserve as keyriskfactors for the development of anumber of cardiovascularandmetabolicdisorders,including type 2diabetesmellitus(T2DM).On the territory of the Russian Federation, drugswerepresentedasagonists of glucagon-like peptide of the first type (GLP-1)receptors, the activesubstance of which was producedexclusively by biotechnologicalmeans. It is important to notethat solid-phasechemicalsynthesisisalsooneof the alternativemethods for obtainingGLP-1analogues. A significantadvantage of thismethodoverbiotechnologicalsynthesisis the exclusion of spontaneousamino acid substitutionsand the absence of impuritiescharacteristicofthismethod.

The aim. Evaluation of the biological activity of the domestic medicinal product liraglutide (Enligria®, solution for subcutaneous administration, 6 mg/ml, PROMOMED RUS LLC), obtained by chemical synthesis, and a foreign reference drug (Saxenda®,solutionforsubcutaneousadministration,6 mg/ml,NovoNordiskA/C),obtainedbiotechnologically.

Materials and methods. The effectiveness of liraglutide preparations was evaluated using a model of induced metabolic syndrome in CBA×C57BL/6 SPF mice (n=36,age6months)according to changes in body weight,feedintake,bloodglucoseandlipid levels, and adiposetissuemass.

Results. According to the results of the study, it was shown that Enligria® and Saxenda® drugs have comparable efficacy parameters and statistically significantly (p < 0.05) reduce body weight (13.6±2.1% and 13.3±3.3%, respectively), glucose levels (18 ± 3% and 16 ± 9%), triglycerides (32 ± 12% and 40 ± 18 %) and cholesterol (16 ± 7% and 18 ± 9%) in the blood. Enligria® reduced the mass of structural subcutaneous fat by 32 ± 3% (p < 0.0001), and visceral fat by 34 ± 4% (p < 0.0001). The studiedliraglutidepreparationsshowed a pronouncedhypoglycemiceffect,observedinalldoseranges. The observedhypoglycemiceffectwasdose-dependent.

Conclusion. The results of the work indicate the high effectiveness of the synthetic drug Enligria®, which is expressed in reducing body weight and improving metabolic parameters.

About the Authors

A. A. Andreev-Andrievsky
1. Institute for Biomedical Problems of the Russian Academy of Sciences. 2. Lomonosov Moscow State University.
Russian Federation

Candidate of Sciences (Biology), Leading Researcher, Head of Animal Phenotyping Laboratory, Institute for Biomedical Problems of the Russian Academy of Sciences; Senior Researcher, Laboratory of General Physiology and Regulatory Peptides of the Lomonosov Moscow State University.

1. 76A Khoroshevskoe Hwy, Moscow, Russia, 123007.

2. 1 Leninskie Gory, Moscow, Russia, 119991.



M. A. Mashkin
Institute for Biomedical Problems of the Russian Academy of Sciences.
Russian Federation

researcher Fellow of Animal Phenotyping Laboratory, Institute for Biomedical Problems of the Russian Academy of Sciences. 

76A Khoroshevskoe Hwy, Moscow, Russia, 123007.



M. Vannous
Institute for Biomedical Problems of the Russian Academy of Sciences.
Russian Federation

junior researcher of the Laboratory of Animal Phenotyping, Institute for Biomedical Problems of the Russian Academy of Sciences. 

76A Khoroshevskoe Hwy, Moscow, Russia, 123007.



O. V. Fadeeva
Research Institute of Mitoengineering of Moscow State University.
Russian Federation

Laboratory Research Assistant, Animal Research Department, LLC Research Institute of Mitoengineering of Moscow State University. 

2, Leninskiye Gory, bldg.1, Moscow, Russia,119234



Yu. G. Kazaishvili
Tver State Medical University.
Russian Federation

Candidate of Sciences (Biology), Assistant Professor of the Department of Pharmacology, Tver State Medical University.

4 Sovetskaya Str., Tver, Russia, 170100. 



D. V. Kurkin
1. Russian University of Medicine. 2. Volgograd State Medical University.
Russian Federation

Doctor of Sciences (Pharmacy), Assistant Professor, Director of the Scientific and Educational Institute of Pharmacy n.a. K.M. Lakin, Russian University of Medicine; Professor of the Department of Clinical Pharmacology and Intensive Care of the Volgograd State Medical University. 

1. 4 Dolgorukovskaya Str., Moscow, Russia, 127006.

2. 1 Pavshikh Bortsov Sq., Volgograd, Russia, 400066.

 



K. Ya. Zaslavskaya
National Research Ogarev Mordovia State University.
Russian Federation

Assistant of the Department of Biological and Pharmaceutical Chemistry with the course of organization and management of pharmacy of the National Research Ogarev Mordovia State University.

68 Bolshevistskaya Str., Saransk, Russia, 430005.



P. A. Bely
Russian University of Medicine.
Russian Federation

Doctor of Sciences (Medicine), Senior Laboratory Assistant of Department of Internal Medicine and Gastroenterology of the Russian University of Medicine.

4 Dolgorukovskaya Str., Moscow, Russia, 127006.



A. V. Taganov
Russian Medical Academy of Continuing Professional Education.
Russian Federation

Doctor of Sciences (Medicine), Professor, Professor of the Department of Infectious Diseases of Russian Medical Academy of Continuous Professional Education. 

2/1 Barrikadnaya Str., Moscow, Russia, 125993.



E. A. Rogozhina
MIREA, Russian Technological University.
Russian Federation

PhD candidate of the Department of Biotechnology and Industrial Pharmacy of MIREA, Russian Technological University.

78 Vernadsky Ave., Moscow, Russia, 119454.



K. N. Koryanova
1. Russian Medical Academy of Continuing Professional Education. 2. Pyatigorsk Medical and Pharmaceutical Institute – branch of Volgograd State Medical University.
Russian Federation

Candidate of Sciences (Pharmacy), Assistant Professor of the Department of Pharmacy, Faculty of Postgraduate Education of the Pyatigorsk Medical and Pharmaceutical Institute — branch of Volgograd State Medical University; Assistant Professor of the Department of Pharmacy, General Pharmacology and Pharmaceutical Consulting of the Russian Medical Academy of Continuing Professional Education. 

1. 2/1 Barrikadnaya Str., Moscow, Russia, 125993.

2. 11 Kalinin Ave., Pyatigorsk, Russia, 357532.



E. S. Mishchenko
Pyatigorsk Medical and Pharmaceutical Institute – branch of Volgograd State Medical University.
Russian Federation

Candidate of Sciences (Pharmacy), Assistant Professor of the Department of Toxicological and Analytical Chemistry, Pyatigorsk Medical and Pharmaceutical Institute – branch of Volgograd State Medical University.

11 Kalinin Ave., Pyatigorsk, Russia, 357532.



T. G. Bodrova
Russian University of Medicine.
Russian Federation

PhD candidate of the Scientific and Educational Institute of Pharmacy n.a. K.M. Lakin, Russian University of Medicine.

4 Dolgorukovskaya Str., Moscow, Russia, 127006.



V. S. Shcherbakova
Tver State Medical University.
Russian Federation

Candidate of Sciences (Biology), Assistant Professor of the Department of Pharmacology, Tver State Medical University. 

4 Sovetskaya Str., Tver, Russia, 170100. 



References

1. Dedov II, Shestakova MV, Mayorov AY, Shamkhalova MS, Sukhareva OYu, Galstyan GR, Tokmakova AY, Nikonova TV, Surkova EV, Kononenko IV, Egorova DN, Ibragimova LI, Shestakova EA, Klefortova II, Sklyanik IA, Yarek-Martynova IYa, Severina AS, Martynov SA, Vikulova OK, Kalashnikov VY, Bondarenko IZ, Gomova IS, Starostina EG, Ametov AS, Antsiferov MB, Bardymova TP, Bondar IA, Valeeva FV, Demidova TY, Mkrtumyan AM, Petunina NA, Ruyatkina LA, Suplotova LA, Ushakova OV, Khalimov YuSh. Diabetes mellitus type 2 in adults. Diabetes mellitus. 2020;23(2S):4-102. DOI: 10.14341/DM12507

2. Ametov AS, Shokhin IE, Rogozhina EA, Bodrova TG, Nevretdinova ME, Bely PA, Zaslavskaya KYa, Kurkin DV, Koryanova KN, Mishchenko ES, Noskov SM. Russian development for drug independence in endocrinology: comparative analysis of bioequivalence, safety and tolerability of the first domestic liraglutide. Pharmacy & Pharmacology. 2023;11(3):255-76. DOI: 10.19163/2307-9266-2023-11-3-255-276

3. Bulgakova S, Romanchuk N, Treneva E. Glucagon-like Peptide 1, Brain, Neurodegenerative Diseases: A Modern View. Bulletin of Science and Practice. 2020;6(4):153-72. DOI: 10.33619/2414-2948/53/19

4. Krysanova VS, Zhuravleva MV, Serebrova SYu. Social and economic innovativeness of overweight and obesity in the Russian Federation. Main approaches to individual discrimination. RMJ (Russian Medical Journal). 2015;23(26):1534-7. (In Russian).

5. Kurkin DV, Makarova EV, Zvereva VI, Makarova AR, Bakulin DA, Marincheva OV, Gorbunova YuV, Kolosov YuA, Krysanov IS, Koryanova KN, Galkina DA, Osadchenko NA, Drai RV, Makarenko IE, Shuvaeva AS. Dynamics of turnover of sugar-lowering drugs in the retail segment of the pharmaceutical market from 2020 to 2024. Pharmacy & Pharmacology. 2025;13(2):84-97. DOI: 10.19163/2307-9266-2025-13-2-84-97

6. Zhou JY, Poudel A, Welchko R, Mekala N, Chandramani-Shivalingappa P, Rosca MG, Li L. Liraglutide improves insulin sensitivity in high fat diet induced diabetic mice through multiple pathways. Eur J Pharmacol. 2019 Oct 15;861:172594. DOI: 10.1016/j.ejphar.2019.172594

7. Shestakova MV, Yudovich EA. Once-weekly administration of dulaglutide, a glucagon-like peptide-1 receptor agonist, as monotherapy and combination therapy: review of the AWARD studies. Diabetes mellitus. 2017;20(3):220-30. DOI: 10.14341/DM20151S1-112

8. Wang L, Wang N, Zhang W, Cheng X, Yan Z, Shao G, Wang X, Wang R, Fu C. Therapeutic peptides: current applications and future directions. Signal Transduct Target Ther. 2022 Feb 14;7(1):48. DOI: 10.1038/s41392-022-00904-4

9. Baggio LL, Drucker DJ. Biology of incretins: GLP-1 and GIP. Gastroenterology. 2007 May;132(6):2131-57. DOI: 10.1053/j.gastro.2007.03.054

10. Adams JM, Pei H, Sandoval DA, Seeley RJ, Chang RB, Liberles SD, Olson DP. Liraglutide Modulates Appetite and Body Weight Through Glucagon-Like Peptide 1 Receptor-Expressing Glutamatergic Neurons. Diabetes. 2018 Aug;67(8):1538-48. DOI: 10.2337/db17-1385

11. Bacharach SZ, Tordoff MG, Alhadeff AL. Glucose Sensing in the Hepatic Portal Vein and Its Role in Food Intake and Reward. Cell Mol Gastroenterol Hepatol. 2023;16(2):189-99. DOI: 10.1016/j.jcmgh.2023.03.012

12. Ahrén B. Gut peptides and type 2 diabetes mellitus treatment. Curr Diab Rep. 2003 Oct;3(5):365-72. DOI: 10.1007/s11892-003-0079-9

13. Salukhov VV, Ilyinskaya TA, Minakov AA. Influence of modern antidiabetic therapy on body weight in patients with type 2 diabetes mellitus. Endokrinologiya: novosti, mneniya, obuchenie [Endocrinology: News, Opinions, Training]. 2022;11(1):39-52. DOI: 10.33029/2304-9529-2022-11-1-39-52

14. Drucker DJ. Mechanisms of Action and Therapeutic Application of Glucagon-like Peptide-1. Cell Metab. 2018 Apr 3;27(4):740-56. DOI: 10.1016/j.cmet.2018.03.001

15. Drucker DJ, Dritselis A, Kirkpatrick P. Liraglutide. Nat Rev Drug Discov. 2010 Apr;9(4):267-8. DOI: 10.1038/nrd3148

16. Verdich C, Flint A, Gutzwiller JP, Näslund E, Beglinger C, Hellström PM, Long SJ, Morgan LM, Holst JJ, Astrup A. A meta-analysis of the effect of glucagon-like peptide-1 (7-36) amide on ad libitum energy intake in humans. J Clin Endocrinol Metab. 2001 Sep;86(9):4382-9. DOI: 10.1210/jcem.86.9.7877

17. Falk S, Petersen J, Svendsen C, Romero-Leguizamón CR, Jørgensen SH, Krauth N, Ludwig MQ, Lundø K, Roostalu U, Skovbjerg G, Nielsen DAG, Ejdrup AL, Pers TH, Dmytriyeva O, Hecksher-Sørensen J, Gether U, Kohlmeier KA, Clemmensen C. GLP-1 and nicotine combination therapy engages hypothalamic and mesolimbic pathways to reverse obesity. Cell Rep. 2023 May 30;42(5):112466. DOI: 10.1016/j.celrep.2023.112466

18. Greenwood MP, Greenwood M, Bárez-López S, Hawkins JW, Short K, Tatovic D, Murphy D. Osmoadaptive GLP-1R signalling in hypothalamic neurones inhibits antidiuretic hormone synthesis and release. Mol Metab. 2023 Apr;70:101692. DOI: 10.1016/j.molmet.2023.101692

19. Nogueiras R, Pérez-Tilve D, Veyrat-Durebex C, Morgan DA, Varela L, Haynes WG, Patterson JT, Disse E, Pfluger PT, López M, Woods SC, DiMarchi R, Diéguez C, Rahmouni K, Rohner-Jeanrenaud F, Tschöp MH. Direct control of peripheral lipid deposition by CNS GLP-1 receptor signaling is mediated by the sympathetic nervous system and blunted in diet-induced obesity. J Neurosci. 2009 May 6;29(18):5916-25. DOI: 10.1523/JNEUROSCI.5977-08.2009

20. Gaspar RS, Delafiori J, Zuccoli G, Carregari VC, Prado TP, Morari J, Sidarta-Oliveira D, Solon CS, Catharino RR, Araujo EP, Martins-de-Souza D, Velloso LA. Exogenous succinate impacts mouse brown adipose tissue mitochondrial proteome and potentiates body mass reduction induced by liraglutide. Am J Physiol Endocrinol Metab. 2023 Mar 1;324(3):E226-E240. DOI: 10.1152/ajpendo.00231.2022

21. Le TDV, Fathi P, Watters AB, Ellis BJ, Besing GK, Bozadjieva-Kramer N, Perez MB, Sullivan AI, Rose JP, Baggio LL, Koehler J, Brown JL, Bales MB, Nwaba KG, Campbell JE, Drucker DJ, Potthoff MJ, Seeley RJ, Ayala JE. Fibroblast growth factor-21 is required for weight loss induced by the glucagon-like peptide-1 receptor agonist liraglutide in male mice fed high carbohydrate diets. Mol Metab. 2023 Jun;72:101718. DOI: 10.1016/j.molmet.2023.101718

22. Imbernon M, Saponaro C, Helms HCC, Duquenne M, Fernandois D, Deligia E, Denis RGP, Chao DHM, Rasika S, Staels B, Pattou F, Pfrieger FW, Brodin B, Luquet S, Bonner C, Prevot V. Tanycytes control hypothalamic liraglutide uptake and its anti-obesity actions. Cell Metab. 2022 Jul 5;34(7):1054-1063.e7. DOI: 10.1016/j.cmet.2022.06.002

23. Lee TS, Park EJ, Choi M, Oh HS, An Y, Kim T, Kim TH, Shin BS, Shin S. Novel LC-MS/MS analysis of the GLP-1 analog semaglutide with its application to pharmacokinetics and brain distribution studies in rats. J Chromatogr B Analyt Technol Biomed Life Sci. 2023 Apr 15;1221:123688. DOI: 10.1016/j.jchromb.2023.123688

24. Garbow JR, Lin X, Sakata N, Chen Z, Koh D, Schonfeld G. In vivo MRS measurement of liver lipid levels in mice. J Lipid Res. 2004 Jul;45(7):1364-71. DOI: 10.1194/jlr.D400001-JLR200

25. Leporq B, Lambert SA, Ronot M, Boucenna I, Colinart P, Cauchy F, Vilgrain V, Paradis V, Van Beers BE. Hepatic fat fraction and visceral adipose tissue fatty acid composition in mice: Quantification with 7.0T MRI. Magn Reson Med. 2016 Aug;76(2):510-8. DOI: 10.1002/mrm.25895

26. McKay NJ, Kanoski SE, Hayes MR, Daniels D. Glucagon-like peptide-1 receptor agonists suppress water intake independent of effects on food intake. Am J Physiol Regul Integr Comp Physiol. 2011 Dec;301(6):R1755-64. DOI: 10.1152/ajpregu.00472.2011

27. Fan D, Wang Y, Liu B, Yin F. Hypoglycemic drug liraglutide alleviates low muscle mass by inhibiting the expression of MuRF1 and MAFbx in diabetic muscle atrophy. J Chin Med Assoc. 2023 Feb 1;86(2):166-175. DOI: 10.1097/JCMA.0000000000000807

28. Dissard R, Klein J, Caubet C, Breuil B, Siwy J, Hoffman J, Sicard L, Ducassé L, Rascalou S, Payre B, Buléon M, Mullen W, Mischak H, Tack I, Bascands JL, Buffin-Meyer B, Schanstra JP. Long term metabolic syndrome induced by a high fat high fructose diet leads to minimal renal injury in C57BL/6 mice. PLoS One. 2013 Oct 3;8(10):e76703. DOI: 10.1371/journal.pone.0076703

29. Khalikova D, An'kov S, Zhukova N, Tolstikova T, Popov S, Saiko A. Effect of the Composition of Leuzea and Cranberry Meal Extracts on Metabolic Processes in Norm and Pathology. Pharmaceuticals (Basel). 2023 May 19;16(5):768. DOI: 10.3390/ph16050768

30. Tukhovskaya EA, Shaykhutdinova ER, Pakhomova IA, Slashcheva GA, Goryacheva NA, Sadovnikova ES, Rasskazova EA, Kazakov VA, Dyachenko IA, Frolova AA, Brovkin AN, Kaluzhsky VE, Beburov MY, Murashev AN. AICAR Improves Outcomes of Metabolic Syndrome and Type 2 Diabetes Induced by High-Fat Diet in C57Bl/6 Male Mice. Int J Mol Sci. 2022 Dec 11;23(24):15719. DOI: 10.3390/ijms232415719


Review

For citations:


Andreev-Andrievsky A.A., Mashkin M.A., Vannous M., Fadeeva O.V., Kazaishvili Yu.G., Kurkin D.V., Zaslavskaya K.Ya., Bely P.A., Taganov A.V., Rogozhina E.A., Koryanova K.N., Mishchenko E.S., Bodrova T.G., Shcherbakova V.S. The efficacy of liraglutide-based drugs on the model of induced metabolic syndrome in experimental animals. Pharmacy & Pharmacology. 2025;13(3):171-183. (In Russ.) https://doi.org/10.19163/2307-9266-2025-13-3-171-183

Views: 21


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2307-9266 (Print)
ISSN 2413-2241 (Online)